001053102 001__ 1053102
001053102 005__ 20260202125356.0
001053102 0247_ $$2doi$$a10.1063/5.0308836
001053102 0247_ $$2ISSN$$a0003-6951
001053102 0247_ $$2ISSN$$a1520-8842
001053102 0247_ $$2ISSN$$a1077-3118
001053102 037__ $$aFZJ-2026-01442
001053102 082__ $$a530
001053102 1001_ $$0P:(DE-HGF)0$$aTetzner, H.$$b0$$eCorresponding author
001053102 245__ $$aDislocations influence the background hole densities in Ge/Si virtual substrates
001053102 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2025
001053102 3367_ $$2DRIVER$$aarticle
001053102 3367_ $$2DataCite$$aOutput Types/Journal article
001053102 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770030716_784
001053102 3367_ $$2BibTeX$$aARTICLE
001053102 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001053102 3367_ $$00$$2EndNote$$aJournal Article
001053102 520__ $$aIn this study, the interaction between extended defects and the electrical activity of Ge/Si (001) plastically relaxed epitaxial layers is examined.We used depth-resolved electrochemical capacitance–voltage profiling to measure the background active carrier concentration in a set ofepilayers featuring a threading dislocation density spanning more than four orders of magnitude (from 7 106 to 2.5 1010 cm 2). Thedepth profile of the carrier concentration shows a pronounced peak, which is attributed to the presence of misfit dislocations at the Ge/Siheterointerface; and a nearly constant p-type background extending throughout the Ge layer. This background level decreases with increasedcrystalline quality, and saturates at 1 1015 cm 3 when the dislocation density falls below 1 108 cm 2, indicating a lower limit governedby electrically active defect states and impurity-related point defect complexes formed during epitaxial growth and thermal processing.These findings suggest that extended and point defects critically influence the unintentional doping observed in Ge on Si epitaxy.Understanding their interplay provides valuable insights into defect engineering strategies that can suppress electrically active defects,enabling the fabrication of high-performance Ge-based electronic and photonic devices with improved doping control and more predictableelectrical behavior.
001053102 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001053102 536__ $$0G:(GEPRIS)537127697$$aDFG project G:(GEPRIS)537127697 - Thermoelektrische Eigenschaften von SiGeSn-Mikrobauelementen (537127697)$$c537127697$$x1
001053102 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053102 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001053102 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001053102 7001_ $$0P:(DE-HGF)0$$aCorley-Wiciak, A. A.$$b1
001053102 7001_ $$0P:(DE-Juel1)201941$$aDevaiya, Ambrishkumar$$b2$$ufzj
001053102 7001_ $$0P:(DE-HGF)0$$aConcepción, O.$$b3
001053102 7001_ $$0P:(DE-HGF)0$$aStolarek, D.$$b4
001053102 7001_ $$0P:(DE-HGF)0$$aSchubert, M. A.$$b5
001053102 7001_ $$0P:(DE-HGF)0$$aYamamoto, Y.$$b6
001053102 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b7
001053102 7001_ $$0P:(DE-HGF)0$$aCapellini, G.$$b8
001053102 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/5.0308836$$gVol. 127, no. 25, p. 251901$$n25$$p251901$$tApplied physics letters$$v127$$x0003-6951$$y2025
001053102 8564_ $$uhttps://juser.fz-juelich.de/record/1053102/files/2026-%20APL%20_Dislocations%20in%20Ge%20_IHP.pdf$$yRestricted
001053102 909CO $$ooai:juser.fz-juelich.de:1053102$$pVDB
001053102 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IHP $$b0
001053102 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IHP$$b1
001053102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201941$$aForschungszentrum Jülich$$b2$$kFZJ
001053102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001053102 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IHP$$b4
001053102 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IHP$$b6
001053102 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Nagoya University$$b6
001053102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b7$$kFZJ
001053102 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IHP$$b8
001053102 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University Roma Tre$$b8
001053102 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001053102 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-18$$wger
001053102 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2022$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001053102 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001053102 920__ $$lyes
001053102 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053102 980__ $$ajournal
001053102 980__ $$aVDB
001053102 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053102 980__ $$aUNRESTRICTED