001     1053102
005     20260202125356.0
024 7 _ |a 10.1063/5.0308836
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1520-8842
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
037 _ _ |a FZJ-2026-01442
082 _ _ |a 530
100 1 _ |a Tetzner, H.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Dislocations influence the background hole densities in Ge/Si virtual substrates
260 _ _ |a Melville, NY
|c 2025
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770030716_784
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, the interaction between extended defects and the electrical activity of Ge/Si (001) plastically relaxed epitaxial layers is examined.We used depth-resolved electrochemical capacitance–voltage profiling to measure the background active carrier concentration in a set ofepilayers featuring a threading dislocation density spanning more than four orders of magnitude (from 7 106 to 2.5 1010 cm 2). Thedepth profile of the carrier concentration shows a pronounced peak, which is attributed to the presence of misfit dislocations at the Ge/Siheterointerface; and a nearly constant p-type background extending throughout the Ge layer. This background level decreases with increasedcrystalline quality, and saturates at  1 1015 cm 3 when the dislocation density falls below  1 108 cm 2, indicating a lower limit governedby electrically active defect states and impurity-related point defect complexes formed during epitaxial growth and thermal processing.These findings suggest that extended and point defects critically influence the unintentional doping observed in Ge on Si epitaxy.Understanding their interplay provides valuable insights into defect engineering strategies that can suppress electrically active defects,enabling the fabrication of high-performance Ge-based electronic and photonic devices with improved doping control and more predictableelectrical behavior.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)537127697 - Thermoelektrische Eigenschaften von SiGeSn-Mikrobauelementen (537127697)
|0 G:(GEPRIS)537127697
|c 537127697
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Basic research
|0 V:(DE-MLZ)GC-2004-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Corley-Wiciak, A. A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Devaiya, Ambrishkumar
|0 P:(DE-Juel1)201941
|b 2
|u fzj
700 1 _ |a Concepción, O.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stolarek, D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schubert, M. A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Yamamoto, Y.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 7
700 1 _ |a Capellini, G.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1063/5.0308836
|g Vol. 127, no. 25, p. 251901
|0 PERI:(DE-600)1469436-0
|n 25
|p 251901
|t Applied physics letters
|v 127
|y 2025
|x 0003-6951
856 4 _ |u https://juser.fz-juelich.de/record/1053102/files/2026-%20APL%20_Dislocations%20in%20Ge%20_IHP.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1053102
|p VDB
910 1 _ |a IHP
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a IHP
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)201941
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a IHP
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a IHP
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Nagoya University
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125569
910 1 _ |a IHP
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a University Roma Tre
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21