001053103 001__ 1053103
001053103 005__ 20260206202203.0
001053103 037__ $$aFZJ-2026-01443
001053103 1001_ $$0P:(DE-Juel1)138266$$aSchrader, Tobias Erich$$b0$$eCorresponding author$$ufzj
001053103 1112_ $$aMLZ User Meeting 2025$$cMünchen$$d2025-12-03 - 2025-12-04$$wGermany
001053103 245__ $$aDevelopment of a new Macromolecular Instrument at the High Brilliance Neutron Source in Jülich
001053103 260__ $$c2025
001053103 3367_ $$033$$2EndNote$$aConference Paper
001053103 3367_ $$2BibTeX$$aINPROCEEDINGS
001053103 3367_ $$2DRIVER$$aconferenceObject
001053103 3367_ $$2ORCID$$aCONFERENCE_POSTER
001053103 3367_ $$2DataCite$$aOutput Types/Conference Poster
001053103 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1770385778_1209$$xAfter Call
001053103 520__ $$aNeutron protein crystallography requires a highly brilliant beam in order to measure very small biological single crystals, which typically measure between 0.01 and 1 mm³. Additionally, these crystals have a large unit cell size, which may be as large as 200 Å in at least one dimension. This makes it challenging for neutron beamlines to accommodate this type of measurement. The Jülich High Brilliance Neutron Source is a potential future source of neutrons for Germany. As part of this project, the design and simulation of a macromolecular diffractometer at the 24 Hz TMR station with a conventional 80 m long neutron guide using a cold moderator is planned. An optimized elliptical guide was developed for a neutron bandwidth of 2-4 Å. Simulations suggest that the 80 m instrument will have a flux of 3.3×106 n/s/cm² and a brilliance transfer of 91.7% within a divergence of ±0.4°. Furthermore, it is proposed that the diameter of the smallest moderator should be 14 mm.
001053103 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001053103 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001053103 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
001053103 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
001053103 693__ $$0EXP:(DE-MLZ)BIODIFF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)BIODIFF-20140101$$6EXP:(DE-MLZ)NL1-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eBIODIFF: Diffractometer for large unit cells$$fNL1$$x0
001053103 7001_ $$0P:(DE-HGF)0$$aJialian, He$$b1
001053103 7001_ $$0P:(DE-HGF)0$$aKonik, Peter$$b2$$eContributor
001053103 8564_ $$uhttps://juser.fz-juelich.de/record/1053103/files/poster_user_meeting_1.pptx$$yRestricted
001053103 909CO $$ooai:juser.fz-juelich.de:1053103$$pVDB:MLZ$$pVDB
001053103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138266$$aForschungszentrum Jülich$$b0$$kFZJ
001053103 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001053103 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
001053103 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001053103 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001053103 920__ $$lyes
001053103 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
001053103 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x1
001053103 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
001053103 980__ $$aposter
001053103 980__ $$aVDB
001053103 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001053103 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001053103 980__ $$aI:(DE-588b)4597118-3
001053103 980__ $$aUNRESTRICTED