001053109 001__ 1053109
001053109 005__ 20260202125515.0
001053109 0247_ $$2doi$$a10.1021/acsaem.5c00733
001053109 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-01449
001053109 037__ $$aFZJ-2026-01449
001053109 082__ $$a540
001053109 1001_ $$0P:(DE-HGF)0$$aGraziosi, Patrizio$$b0$$eCorresponding author
001053109 245__ $$aEpitaxial SiGeSn Alloys for CMOS-Compatible Thermoelectric Devices
001053109 260__ $$aWashington, DC$$bACS Publications$$c2025
001053109 3367_ $$2DRIVER$$aarticle
001053109 3367_ $$2DataCite$$aOutput Types/Journal article
001053109 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770033066_2135
001053109 3367_ $$2BibTeX$$aARTICLE
001053109 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001053109 3367_ $$00$$2EndNote$$aJournal Article
001053109 520__ $$aThe integration of thermoelectric devices into mainstream microelectronictechnological platforms could be a major breakthrough in various fieldswithin the so-called Green-IT realm. In this article, the thermoelectric properties ofheteroepitaxial SiGeSn alloys, an emergent CMOS-compatible material system, areevaluated to assess their possible application in thermoelectric devices. To this purpose,starting from the experimentally low lattice thermal conductivity of SiGeSn/Ge/Si layersof about ∼1 to 2 W/m·K assessed by means of 3-ω measurements, the figure of meritsare calculated through the use of Boltzmann transport equation, taking into account therelevant intervalley scattering processes, peculiar of this multivalley material system.Values for the figure of merit ZT exceeding 1 have been obtained for both p- and n-typematerial at operating temperatures within the 300−400 K range, i.e., at typical on-chiptemperatures. In this interval, the predicted power factor also features very competitivevalues on the order of 20 μW/cm ·K2. Our finding indicates that this emergent class ofSi-based materials has extremely good prospects for real-world applications and canfurther stimulate scientific investigation in this ambit.
001053109 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001053109 536__ $$0G:(GEPRIS)537127697$$aDFG project G:(GEPRIS)537127697 - Thermoelektrische Eigenschaften von SiGeSn-Mikrobauelementen (537127697)$$c537127697$$x1
001053109 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053109 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001053109 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001053109 7001_ $$0P:(DE-HGF)0$$aMarian, Damiano$$b1
001053109 7001_ $$0P:(DE-HGF)0$$aTomadin, Andrea$$b2
001053109 7001_ $$0P:(DE-HGF)0$$aRoddaro, Stefano$$b3
001053109 7001_ $$0P:(DE-Juel1)188576$$aConcepción, Omar$$b4
001053109 7001_ $$0P:(DE-Juel1)203251$$aTiscareño-Ramírez, Jhonny$$b5
001053109 7001_ $$0P:(DE-Juel1)194320$$aKaul, Prateek$$b6$$ufzj
001053109 7001_ $$0P:(DE-HGF)0$$aCorley-Wiciak, Agnieszka Anna$$b7
001053109 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b8$$ufzj
001053109 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b9
001053109 7001_ $$0P:(DE-HGF)0$$aVirgilio, Michele$$b10
001053109 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.5c00733$$gVol. 8, no. 13, p. 9075 - 9082$$n13$$p9075 - 9082$$tACS applied energy materials$$v8$$x2574-0962$$y2025
001053109 8564_ $$uhttps://juser.fz-juelich.de/record/1053109/files/2025%20ACS%20Applied%20En%20Mat%20-%20SiGeSn%20TE.pdf$$yOpenAccess
001053109 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a CNR - ISMN, Bologna$$b0
001053109 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Universita di Pisa $$b1
001053109 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a NEST, CNR Istituto Nanoscienze, Pisa$$b3
001053109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188576$$aForschungszentrum Jülich$$b4$$kFZJ
001053109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203251$$aForschungszentrum Jülich$$b5$$kFZJ
001053109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194320$$aForschungszentrum Jülich$$b6$$kFZJ
001053109 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IHP$$b7
001053109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b8$$kFZJ
001053109 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IHP$$b9
001053109 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversita Roma Tre $$b9
001053109 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Universita di Pisa$$b10
001053109 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001053109 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001053109 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001053109 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
001053109 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001053109 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2022$$d2024-12-11
001053109 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2022$$d2024-12-11
001053109 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001053109 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001053109 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001053109 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001053109 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001053109 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001053109 920__ $$lyes
001053109 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053109 980__ $$ajournal
001053109 980__ $$aVDB
001053109 980__ $$aUNRESTRICTED
001053109 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053109 9801_ $$aFullTexts