001     1053109
005     20260202125515.0
024 7 _ |a 10.1021/acsaem.5c00733
|2 doi
024 7 _ |a 10.34734/FZJ-2026-01449
|2 datacite_doi
037 _ _ |a FZJ-2026-01449
082 _ _ |a 540
100 1 _ |a Graziosi, Patrizio
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Epitaxial SiGeSn Alloys for CMOS-Compatible Thermoelectric Devices
260 _ _ |a Washington, DC
|c 2025
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770033066_2135
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The integration of thermoelectric devices into mainstream microelectronictechnological platforms could be a major breakthrough in various fieldswithin the so-called Green-IT realm. In this article, the thermoelectric properties ofheteroepitaxial SiGeSn alloys, an emergent CMOS-compatible material system, areevaluated to assess their possible application in thermoelectric devices. To this purpose,starting from the experimentally low lattice thermal conductivity of SiGeSn/Ge/Si layersof about ∼1 to 2 W/m·K assessed by means of 3-ω measurements, the figure of meritsare calculated through the use of Boltzmann transport equation, taking into account therelevant intervalley scattering processes, peculiar of this multivalley material system.Values for the figure of merit ZT exceeding 1 have been obtained for both p- and n-typematerial at operating temperatures within the 300−400 K range, i.e., at typical on-chiptemperatures. In this interval, the predicted power factor also features very competitivevalues on the order of 20 μW/cm ·K2. Our finding indicates that this emergent class ofSi-based materials has extremely good prospects for real-world applications and canfurther stimulate scientific investigation in this ambit.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)537127697 - Thermoelektrische Eigenschaften von SiGeSn-Mikrobauelementen (537127697)
|0 G:(GEPRIS)537127697
|c 537127697
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Marian, Damiano
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tomadin, Andrea
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Roddaro, Stefano
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Concepción, Omar
|0 P:(DE-Juel1)188576
|b 4
700 1 _ |a Tiscareño-Ramírez, Jhonny
|0 P:(DE-Juel1)203251
|b 5
700 1 _ |a Kaul, Prateek
|0 P:(DE-Juel1)194320
|b 6
|u fzj
700 1 _ |a Corley-Wiciak, Agnieszka Anna
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 8
|u fzj
700 1 _ |a Capellini, Giovanni
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Virgilio, Michele
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1021/acsaem.5c00733
|g Vol. 8, no. 13, p. 9075 - 9082
|0 PERI:(DE-600)2916551-9
|n 13
|p 9075 - 9082
|t ACS applied energy materials
|v 8
|y 2025
|x 2574-0962
856 4 _ |u https://juser.fz-juelich.de/record/1053109/files/2025%20ACS%20Applied%20En%20Mat%20-%20SiGeSn%20TE.pdf
|y OpenAccess
910 1 _ |a CNR - ISMN, Bologna
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Universita di Pisa
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a NEST, CNR Istituto Nanoscienze, Pisa
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)188576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)203251
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)194320
910 1 _ |a IHP
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125569
910 1 _ |a IHP
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Universita Roma Tre
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Universita di Pisa
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2024-12-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21