001053136 001__ 1053136
001053136 005__ 20260202125356.0
001053136 0247_ $$2doi$$a10.7567/SSDM.2024.J-3-03
001053136 037__ $$aFZJ-2026-01468
001053136 041__ $$aEnglish
001053136 1001_ $$0P:(DE-Juel1)194320$$aKaul, Prateek$$b0$$eCorresponding author
001053136 1112_ $$a2024 International Conference on Solid State Devices and Materials$$cArcrea HIMEJI$$d2024-09-01 - 2024-09-04$$gSSDM2024$$wJapan
001053136 245__ $$aMagneto-transport Characterization of GeSn for Spintronics Applications
001053136 260__ $$c2024
001053136 3367_ $$033$$2EndNote$$aConference Paper
001053136 3367_ $$2DataCite$$aOther
001053136 3367_ $$2BibTeX$$aINPROCEEDINGS
001053136 3367_ $$2DRIVER$$aconferenceObject
001053136 3367_ $$2ORCID$$aLECTURE_SPEECH
001053136 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1770031867_2133$$xOther
001053136 500__ $$aRestricted till Sept 2026
001053136 502__ $$cRWTH Aachen
001053136 520__ $$aThe novel GeSn alloy system is an exciting semicon-ductor that is currently under investigation for its appli-cations in photonics, electronics, and spintronics. How-ever, literature on GeSn with the application of magnetic fields is quite limited. This work addresses the low-tem-perature magneto-transport measurements on n-GeSn. The results obtained confirm phase-coherent transport of electrons and the analysis of Shubnikov–de Haas (SdH) oscillations allows the calculation of their effective mass and mobility. First steps to prove 2D conduction channels are also discussed towards the implementation of GeSn qubits for quantum computing.
001053136 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001053136 536__ $$0G:(EU-Grant)101070208$$aLASTSTEP - group-IV LASer and deTectors on Si-TEchnology Platform (101070208)$$c101070208$$fHORIZON-CL4-2021-DIGITAL-EMERGING-01$$x1
001053136 588__ $$aDataset connected to CrossRef Conference
001053136 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001053136 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
001053136 7001_ $$0P:(DE-HGF)0$$aConcepcion, Omar$$b1
001053136 7001_ $$0P:(DE-HGF)0$$aWielens, Daan$$b2
001053136 7001_ $$0P:(DE-Juel1)145960$$aZellekens, Patrick$$b3$$ufzj
001053136 7001_ $$0P:(DE-HGF)0$$aLi, Chuan$$b4
001053136 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b5
001053136 7001_ $$0P:(DE-HGF)0$$aIshibashi, Koji$$b6
001053136 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b7$$ufzj
001053136 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b8$$ufzj
001053136 7001_ $$0P:(DE-HGF)0$$aBrinkman, Alexander$$b9
001053136 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b10$$ufzj
001053136 773__ $$a10.7567/SSDM.2024.J-3-03
001053136 8564_ $$uhttps://doi.org/10.7567/SSDM.2024.J-3-03
001053136 8564_ $$uhttps://juser.fz-juelich.de/record/1053136/files/SSDM2024_Abstract_PK_v3.pdf$$yRestricted
001053136 909CO $$ooai:juser.fz-juelich.de:1053136$$popenaire$$pVDB$$pec_fundedresources
001053136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194320$$aForschungszentrum Jülich$$b0$$kFZJ
001053136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001053136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145960$$aForschungszentrum Jülich$$b3$$kFZJ
001053136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b7$$kFZJ
001053136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b8$$kFZJ
001053136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b10$$kFZJ
001053136 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001053136 920__ $$lyes
001053136 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053136 980__ $$aconf
001053136 980__ $$aVDB
001053136 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053136 980__ $$aUNRESTRICTED