001053152 001__ 1053152
001053152 005__ 20260202125356.0
001053152 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-01484
001053152 037__ $$aFZJ-2026-01484
001053152 041__ $$aEnglish
001053152 1001_ $$0P:(DE-Juel1)201941$$aDevaiya, A. J.$$b0$$eCorresponding author
001053152 1112_ $$athe 11th NRW Nano Conference$$cDortmund$$d2025-09-30 - 2025-10-01$$wGermany
001053152 245__ $$aAdvanced CSiGeSn heterostructures for photonic applications
001053152 260__ $$c2025
001053152 3367_ $$033$$2EndNote$$aConference Paper
001053152 3367_ $$2DataCite$$aOther
001053152 3367_ $$2BibTeX$$aINPROCEEDINGS
001053152 3367_ $$2DRIVER$$aconferenceObject
001053152 3367_ $$2ORCID$$aLECTURE_SPEECH
001053152 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1770031738_2135$$xOther
001053152 502__ $$cUniversity of Cologne
001053152 520__ $$aGroup IV materials provide a foundational platform for advancing silicon-based photonics applications. Especially, GeSn-based Group-IV alloys have demonstrated a direct band gap with higher electron mobility, which is beneficial for photonic integrated chips (PIC) and spintronic fields with complementary metal-oxide semiconductor (CMOS) compatibility.[1] A recent breakthrough in the Si photonics field was the demonstration of continuous-wave, electrically pumped lasing based on advanced SiGeSn/GeSn multi-quantum well structures (MQWs).[2] In addition, theoretical calculations predict that C substitution into the Ge and GeSn lattice further improves the fundamental bandgap directness, enhancing laser performance.[3] Moreover, incorporating C as well as Si and Sn into Ge allowed a large tunability of the light emission in the Mid-infrared range of 2-5 μm. However, the low solid solubility and large lattice mismatch mostly limit the substitutional incorporation of C into the Ge diamond lattice.
001053152 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001053152 536__ $$0G:(EU-Grant)101070208$$aLASTSTEP - group-IV LASer and deTectors on Si-TEchnology Platform (101070208)$$c101070208$$fHORIZON-CL4-2021-DIGITAL-EMERGING-01$$x1
001053152 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001053152 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001053152 7001_ $$0P:(DE-HGF)0$$aConcepción, O.$$b1
001053152 7001_ $$0P:(DE-Juel1)186980$$aLiu, Teren$$b2
001053152 7001_ $$0P:(DE-HGF)0$$aSeidel, L.$$b3
001053152 7001_ $$0P:(DE-Juel1)177006$$aBae, J. H.$$b4
001053152 7001_ $$0P:(DE-Juel1)128639$$aTiedemann, A. T.$$b5
001053152 7001_ $$0P:(DE-HGF)0$$aMathur, S.$$b6
001053152 7001_ $$0P:(DE-HGF)0$$aOehme, M.$$b7
001053152 7001_ $$0P:(DE-HGF)0$$aCapellini, G.$$b8
001053152 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b9
001053152 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b10
001053152 8564_ $$uhttps://www.nanoconference.de/etn/11th-nrw-nano-conference/
001053152 8564_ $$uhttps://juser.fz-juelich.de/record/1053152/files/20250731%20NRW_Nano_Conference_Devaiya.pdf$$yOpenAccess
001053152 909CO $$ooai:juser.fz-juelich.de:1053152$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources
001053152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201941$$aForschungszentrum Jülich$$b0$$kFZJ
001053152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001053152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186980$$aForschungszentrum Jülich$$b2$$kFZJ
001053152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177006$$aForschungszentrum Jülich$$b4$$kFZJ
001053152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128639$$aForschungszentrum Jülich$$b5$$kFZJ
001053152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b9$$kFZJ
001053152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b10$$kFZJ
001053152 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001053152 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001053152 920__ $$lyes
001053152 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053152 980__ $$aconf
001053152 980__ $$aVDB
001053152 980__ $$aUNRESTRICTED
001053152 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053152 9801_ $$aFullTexts