001053173 001__ 1053173
001053173 005__ 20260203202226.0
001053173 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-01505
001053173 037__ $$aFZJ-2026-01505
001053173 041__ $$aEnglish
001053173 1001_ $$0P:(DE-Juel1)201941$$aDevaiya, Ambrishkumar J.$$b0
001053173 1112_ $$a16th International WorkShop on New Group IV Semiconductor Nanoelectronics$$cSendai$$d2025-11-17 - 2025-11-18$$wJapan
001053173 245__ $$aCSiGeSn Epitaxy: Future Isovalent Isomorphism in Group-IV Materials
001053173 260__ $$c2025
001053173 3367_ $$033$$2EndNote$$aConference Paper
001053173 3367_ $$2DataCite$$aOther
001053173 3367_ $$2BibTeX$$aINPROCEEDINGS
001053173 3367_ $$2DRIVER$$aconferenceObject
001053173 3367_ $$2ORCID$$aLECTURE_SPEECH
001053173 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1770033250_2135$$xOther
001053173 502__ $$cUniversity of Cologne
001053173 520__ $$aGroup-IV materials constitute the foundational platform for advancing silicon-based photonics, spintronic, and energy technologies.[1] Recent breakthrough in the field includes the demonstration of continues-wave electrically pumped lasing based on advanced (Si)GeSn/GeSn MQWs.[2] Theoretical calculations predicts that the C substitution into Ge lattice even enhance the directness of band gap leading to laser performance improvement.[3] In this study, we address the growth aspects of ternary and quaternary Group-IV alloys, in comparison with GeSn epitaxy, which serve as benchmark. Additionally, an unconventional carbon precursor - CBr4 is introduced and its chemical influence on onset Sn alloying for CGeSn alloys is presented. Later, the Si induce defect engineering to compensate the effect of C alloying on strain relaxation in diamond cubic lattice during (Si)GeSn epitaxy is studied.
001053173 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001053173 536__ $$0G:(EU-Grant)101070208$$aLASTSTEP - group-IV LASer and deTectors on Si-TEchnology Platform (101070208)$$c101070208$$fHORIZON-CL4-2021-DIGITAL-EMERGING-01$$x1
001053173 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001053173 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001053173 7001_ $$0P:(DE-HGF)0$$aConcepcion, Omar$$b1
001053173 7001_ $$0P:(DE-HGF)0$$aFischer, Thomas$$b2
001053173 7001_ $$0P:(DE-Juel1)128639$$aTiedemann, Andreas$$b3
001053173 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b4
001053173 7001_ $$0P:(DE-HGF)0$$aMathur, Sanjay$$b5
001053173 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
001053173 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b7$$eCorresponding author
001053173 8564_ $$uhttps://www.murota.riec.tohoku.ac.jp/EI4GroupIV-WS2025/
001053173 8564_ $$uhttps://juser.fz-juelich.de/record/1053173/files/EI14GroupIV_CSiGeSn%20Epitaxy_FZ%20Juelich.pdf$$yOpenAccess
001053173 909CO $$ooai:juser.fz-juelich.de:1053173$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources
001053173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201941$$aForschungszentrum Jülich$$b0$$kFZJ
001053173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001053173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128639$$aForschungszentrum Jülich$$b3$$kFZJ
001053173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b6$$kFZJ
001053173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b7$$kFZJ
001053173 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001053173 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001053173 920__ $$lyes
001053173 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053173 980__ $$aconf
001053173 980__ $$aVDB
001053173 980__ $$aUNRESTRICTED
001053173 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053173 9801_ $$aFullTexts