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This thesis looks at how bio amendments like glucose, xyloglucan, and biochar affect 
carbon dynamics, carbon stability, and carbon aggregation of the soil needed to maintain 
agricultural fertility as well as for promoting sustainable agriculture. Two research papers 
have been incorporated in the research that look at specific bioamendments' effects on the 
soil. 
The first study investigates the contribution of glucose and xyloglucan to enhancing soil 
aggregation and stability. It assesses the monosaccharide glucose against the 
polysaccharide xyloglucan, positing that while glucose would rapidly elevate CO₂ 
emissions, xyloglucan would facilitate more stable and long-lasting soil aggregation. Two 
soil types, L2.1 and REC, received amendments with varying amounts of glucose, 
xyloglucan, and a control. Throughout a 31-day incubation, CO₂ flux and soil particle 
sizes were recorded. The findings revealed that the glucose treatment increased CO₂ 
emissions, particularly within the initial two days, due to glucose’s labile properties, 
which encourage rapid microbial metabolism. In contrast, the more complex xyloglucan 
elicited slower CO₂ emissions while promoting improved long-term soil aggregation. The 
cumulative CO₂ emissions from the glucose treatments were significantly higher than 
those from xyloglucan, indicating a more immediate microbial reaction to glucose. 
 
The second study investigates the effects of glucose and xyloglucan, with and without 
biochar, on soil organic carbon (SOC) priming and CO₂ emissions. The hypothesis was 
that glucose would produce a swift priming effect while xyloglucan would offer a more 
stable, gradual effect. Biochar was expected to improve SOC stabilization and priming. 
Two soil types, CKA and L2.1, were treated with glucose, xyloglucan, and biochar, with 
CO₂ flux tracked over a 35-day incubation. Isotope ratio mass spectrometry (IRMS) was 
employed to analyze the δ13C signature of CO₂ emissions, facilitating an evaluation of 
SOC priming. The results indicated that glucose and biochar created the most significant 
priming effect, rapidly enhancing microbial activity and SOC degradation. Specifically, 
the cumulative priming effect from glucose plus biochar was nearly double that of the 
xyloglucan treatments. The fact that biochar had no discernible effect on CO₂ emissions 
from glucose suggests that when there are plenty of carbon sources, such as glucose, 
available, its influence on microbial turnover is less pronounced.  
 
The findings demonstrate the distinct functions of xyloglucan and glucose in soil carbon 
dynamics. While xyloglucan promotes a more slow but continuous priming impact, which 
helps with long-term soil stability, glucose causes a quick and noticeable priming effect 
that increases microbial activity and SOC breakdown. It was clear that biochar helped 
stabilize SOC, particularly when combined with glucose. However, in the presence of 
easily accessible carbon sources, it seems to have no effect on microbial turnover. 
 
 
 



 
viii 

 

Table of content 
Abstract ............................................................................................................................ vi 
1. Introduction .................................................................................................................. 1 

1.1 Importance of soil organic matter for aggregation and sustainable agriculture ..... 1 

1.2 Formation and stabilization of soil aggregates ....................................................... 1 

1.3 Role of organic amendments on aggregate formation and stability ................... 2 

1.3.1 Polysaccharides and glucose ............................................................................... 2 

1.3.2 Biochar................................................................................................................. 3 

1.4 Role of organic amendments on soil carbon Balance............................................. 3 

1.5 Priming effect of root exudates and biochar on SOC ............................................. 4 

1-6 Objectives and hypotheses ..................................................................................... 5 

2- Material and methods ................................................................................................... 6 

2-1 Biochar and soil characterization: .......................................................................... 6 

2-2 Glucose and xyloglucan characterization:.............................................................. 7 

2-3 Study 1 - The role of glucose and polysaccharides in soil particles aggregation and 
stability ......................................................................................................................... 8 

2-3-1 Experimental treatments and incubation ......................................................... 8 

2-3-2 CO2 flux measurements from incubated samples .......................................... 8 

2-3-3 Soil particle size and stability after incubation ............................................... 8 

2-3-4 Statistical analysis ........................................................................................... 9 

2-4 Study 2: δ13C signature of CO2 respired from soils amended with glucose, 
xyloglucan, and biochar .............................................................................................. 16 

2-4-1 Experimental treatments and incubation ....................................................... 16 

2-4-2 CO2 flux measurements from incubated samples ........................................ 16 

2-4-3 Isotope-ratio mass spectrometry analysis of incubated samples for δ13C-CO2 
determination .......................................................................................................... 16 

2-4-3-1 Partitioning of CO₂ flux ............................................................................. 17 

2-4-3-2 Priming Effect calculation using δ13C ...................................................... 18 

2-4-4 statistical analysis.............................................................................................. 19 

2-4-1 CO₂ emissions in root exudate treatment experiment ................................... 19 

2-4-2 Root exudate treatments and SOC priming effect ........................................ 19 

3- Results and discussion ................................................................................................ 20 

3-1 Study 1 - The Role of glucose and polysaccharides in soil particles aggregation and 
stability ....................................................................................................................... 20 

3-1-1 Glucose and xyloglucan stability .................................................................. 20 

3-1-2 The Role of polysaccharides in soil aggregation and Stability ..................... 34 

3-2 Study 2: δ13C signature of CO2 respired from soils amended with glucose, 
xyloglucan, and biochar .............................................................................................. 45 



 
ix 

 

3-2-1 CO₂ emissions in root exudate fractions ....................................................... 45 

3-2-1 Root exudate fractions and SOC priming effect ........................................... 50 

4- Conclusion and outlook .............................................................................................. 56 

4-1 Study1: Impact of Glucose, Xyloglucan, and Biochar Amendments on Soil 
Aggregation and CO₂ Emissions ................................................................................ 56 

4-1-1 CO₂ fluxes and treatment effects .................................................................. 56 

4-1-2 The Role of polysaccharides in soil aggregation and Stability ..................... 57 

4-2 Study 2: The Role of Biochar, Glucose, and Xyloglucan on Soil Organic Carbon 
Priming ....................................................................................................................... 58 

4-2-1 CO₂ emissions in root exudate fractions ........................................................... 58 

4-2-2 Root exudate fractions and SOC priming effect ............................................... 58 

5- References .................................................................................................................. 60 

 
 
 
 



 

 
1 

 

1. Introduction 

1.1 Importance of soil organic matter for aggregation and sustainable 
agriculture 

By helping to build and stabilize soil aggregates, soil organic matter (SOM) helps to prevent soil 
erosion (Zhao et al., 2018; Halder et al., 2024). Global food security may be threatened by the loss 
of SOM brought on by climate change and inappropriate agricultural land use, which might result 
in soil degradation, lower crop yields, and poor food quality (Galloway et al., 2017). Therefore, 
addressing soil structure protection is critical for promoting sustainable agriculture, especially for 
counteracting the adverse effects of climate change (Galloway et al., 2017; Tang et al., 2022) 

Soil organic carbon (SOC) composes about 58% of SOM and is central to sustaining soil quality 
and functionality (Stockmann et al., 2013). The imbalance between carbon release into the 
atmosphere and carbon uptake by other compartments increases atmospheric CO₂ concentrations 
at a rate of 4.1 × 10⁹ tons of carbon per year (IPCC, 2007). Retaining carbon in stable forms in the 
soil is essential to mitigate this imbalance. The stability of the different forms of SOC in soil may 
control aggregation, erosion, and CO2 exchange between soil and atmosphere. Therefore, 
understanding how SOC forms affect aggregates’ formation and stability is of interest to enhancing 
the sustainability and productivity of cropping systems while preventing CO2 release from soil to 
atmosphere to combat climate change (Rochette et al., 1999; Fang et al., 2018; Fu et al., 2022; 
Kopittke et al., 2022). 

1.2 Formation and stabilization of soil aggregates 

The binding of soil particles (clay, silt, and sand) to create bigger aggregates with organic and 
inorganic materials and the fundamental units of soil structure is known as soil aggregation 
(Garland et al., 2024; Sarker et al., 2022). Microaggregates (less than 250 µm) and 
macroaggregates (more than 250 µm) are the two sizes of aggregates. Persistent agents, such as 
humic substances, and transient agents, such as roots, microbial products, and root exudates, are 
responsible for the creation and stabilization of aggregates (Totsche et al., 2017; Sarker et al., 
2022). Transient agents such polysaccharides originating from plants and microorganisms, roots, 
and fungal hyphae bind microaggregates into macroaggregates after they have previously been 
created by permanent binding agents like humic substances (Totsche et al., 2017; Morris et al., 
2019; Sarker et al., 2022). Soil is improved by these aggregates.  
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One important measure of soil fertility and quality is aggregate stability, which is the ability of 
these structures to withstand breaking down under outside pressures (Siebers et al., 2023; Abiven 
et al., 2009). A number of variables, including soil texture, clay mineralogy, pH, redox potential, 
mechanical stress, and SOM quantity and composition, affect how stable soil aggregates are.  Thus, 
agricultural practices such as organic amendments can alter the dynamics of soil aggregates 
(Abiven et al., 2009; Totsche et al., 2017).  Macroaggregates are more sensitive to management 
practices and environmental stresses, exhibiting faster turnover rates. In contrast, microaggregates 
are stabilized by persistent binding agents such as humic substances and can withstand slaking in 
water and resist intense mechanical and physicochemical stresses, persisting in soils for decades 
(Totsche et al., 2017; Tag et al., 2022). This difference in stability is due to the hierarchical nature 
of soil aggregation explained earlier (Totsche et al., 2017; Morris et al., 2019; Sarker et al., 2022). 

Wet sieving is enhanced by sophisticated methods for evaluating particle size and stability, such 
as laser diffraction particle analysis, which offers high-resolution assessments of particle size 
distribution. This technique involves dispersing particles in a liquid and analyzing light scattering. 
The volume-based median diameter (Dv50) and other median particle sizes can be precisely 
calculated thanks to the scattering patterns. This method provides a thorough understanding of 
aggregation dynamics and is especially useful for monitoring the stability of soil aggregates under 
mechanical energy or chemical treatments (Mikutta et al., 2023). The stability of microaggregates, 
which are necessary building blocks for the creation of bigger aggregates, may be crucially revealed 
by this technique (Siebers et al., 2023).   

 

1.3 Role of organic amendments on aggregate formation and stability 

1.3.1 Polysaccharides and glucose 

Polysaccharides, including glucose, are critical in soil aggregation as these compounds act as 
“bridges” between soil particles or form gel-like substances that glue particles into aggregates 
(Tisdall & Oades, 1982; Haynes & Beare, 1997; Sarker et al., 2022), even in challenging soil 
conditions (Martin, 1971; Oades, 1984). Sugars, the most prevalent organic substances in the 
biosphere, are the main source of carbon and energy for soil microbes and act as monomers of 
polysaccharides. (Fatemeh Rakhsh & Golchin, 2018; Dowd et al., 2001). Adding glucose to soil 
can lead to a rapid but transient increase in soil aggregation driven by microbial activity and the 
formation of macroaggregates (Sarker et al., 2022; Li et al., 2020; Gunina & Kuzyakov, 2015). 

Xyloglucan, a naturally occurring root exudate, is unique among polysaccharides because of how 
well it promotes soil aggregation.  (Galloway et al., 2018). Xyloglucan is found in soil samples and 
plant growth media, has been shown to increase the proportion of larger soil aggregates and 
improve soil structure by enhancing water retention and particle adhesion (Galloway et al., 2018; 
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Rillig et al., 2017; Read et al., 2003; Bacic et al., 1986). Studies utilizing Scanning Electron 
Microscopy (SEM) have shown that xyloglucan facilitates the adhesion of smaller soil particles to 
larger aggregates, creating stable structures vital for nutrient and water management in soils (Tang 
et al., 2022).  

Polysaccharides decompose over time, leaving behind a more stable fraction that continues to 
contribute to soil aggregation. This stable polysaccharide fraction is essential for maintaining soil 
structure over extended periods, reducing soil degradation, and preventing erosion (Martin, 1971). 
Xyloglucan may persist longer in soil than simpler sugars, providing prolonged benefits for soil 
aggregation and structural stability (Traoré et al., 2000). 

1.3.2 Biochar  

Biochar is carbon-rich material intentionally produced via low-oxygen pyrolysis of plant and/or 
animal-derived materials to be applied to soil as soil ameliorant and stable SOC form (Luo et al., 
2011; Keith et al., 2015; Fang et al., 2015). Biochar supports land reclamation by restoring 
degraded soils and expanding arable land without clearing new areas (Anawar et al., 2015). Beyond 
its agricultural benefits, biochar fosters a circular economy by turning agricultural waste into a 
valuable resource for soil amelioration while sequestering carbon and reducing reliance on energy-
intensive fertilizers (Lehmann et al., 2003; Biederman & Harpole, 2013; Tilman et al., 2011; Smith, 
2016).  
Biochar advances waste management by recycling organic residues and developing agricultural 
by-products into value-added resources for soil amendment (Woolf et al., 2010). Notably, the 
cascading use of organic materials, such as Miscanthus straw, has gained attention in the circular 
economy (Kraska et al., 2018). Biochar from miscanthus improves soil microbial activity, water 
retention, and structure; it benefits poor soils (Basso et al., 2013). These advancements lessen the 
demand for irrigation and artificial fertilizers, lowering expenses and their harmful environmental 
effects (Jeffery et al., 2011).  
Biochar may promote soil aggregation by enhancing cation exchange capacity and microbial 
activity, with effects that can persist for medium to long-term periods (Du et al., 2016; Luo, Zang 
et al., 2017). Also, biochar affects soil aggregation as it interacts with native SOM, influencing its 
decomposition rates and nutrient cycling, thereby causing these compounds to persist as particle 
binders. Although biochar provides the potential for long-term SOC storage, research on how it 
interacts with native SOM is still ongoing (Kalu et al., 2024). 
 
1.4 Role of organic amendments on soil carbon Balance 

Biochar, sugars, and root exudates play crucial roles in influencing SOC dynamics and balance. 
Steinbeiss et al. (2009) demonstrated the impact of biochar amendments on soil carbon 
sequestration and microbial activity during a 4-month incubation. Two biochar types, derived from 
glucose (carbon-dense) and yeast (nitrogen-rich), were applied to forest and arable soils. Using 13C 
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isotope labeling, the authors observed that glucose-derived biochar supported bacterial activity, 
while yeast-derived biochar stimulated fungal activity. Biochar enhanced SOC storage more 
effectively in arable soils, illustrating its contribution as a stable carbon source in agriculture. 

Similarly, Luo et al. (2017) studied the effects of biochar on SOC mineralization, focusing on the 
priming effects induced by labile substrates such as sucrose and Miscanthus. In a 28-day incubation 
experiment with 13C isotope signature (δ13C) analysis of CO2 (δ13C-CO2) respired from the soil, 
the authors reported that high-temperature biochar (700°C) caused a significant increase of SOC 
mineralization, emphasizing the complex interactions between organic amendments and SOM 
dynamics. Keiluweit et al. (2015) showed that root exudates such as oxalic acid disrupted mineral-
organic bonds, enhancing SOC mineralization, while glucose had a more moderate effect. These 
findings illustrate the importance of exudate composition in driving SOC dynamics. Accordingly, 
Schweizer et al. (1999) found that microbial activity alters the δ13C-CO2 respired from soil and the 
δ13C of remaining SOM.  

 

1.5 Priming effect of root exudates and biochar on SOC 

 
The priming effect (PE) refers to the change in SOC mineralization following organic carbon 
amendment to soil (Nottingham et al., 2009). The sources of organic carbon amendment can be 
fresh organic materials such as plant litter, root exudates, or stable carbon materials like biochar. 
A positive PE occurs when these exogenous organic amendments stimulate or reduce soil microbial 
activity, thereby accelerating or decelerating the decomposition of native SOC (Zhou et al., 2022; 
Kalu et al., 2024). 
As roots release labile organic compounds, microorganisms rapidly utilize sugars for energy and 
cell production. This high microbial activity in the rhizosphere, driven by sugars, effectively 
triggers priming effects, highlighting their ecological role in SOC cycling (Pausch et al., 2013). 
Biochar, when combined with organic matter, can also interact to influence decomposition rates. 
Adding easily degradable substrates or labile organic matter in biochar-amended soils often 
accelerates biochar decay. Nonetheless, the first few days after substrate administration are usually 
when this effect is most noticeable (Ameloot, 2013). The dynamic function that substrate inputs 
have in controlling soil microbial activity and carbon cycling is highlighted by these interactions.  
Among the components exuded by roots, carbohydrates are the most abundant, including 
monosaccharides such as glucose, fructose, sucrose, and polysaccharides (Gunina & Kuzyakov, 
2015; Ma et al., 2022). These compounds are easily decomposable, providing an immediate energy 
source for microorganisms and fueling microbial activity in the rhizosphere. Pausch et al. (2013) 
hypothesized that the primary ecological function of root-released sugars is to maintain high 
microbial activity and trigger priming effects on SOC. This is supported by studies such as 
Keiluweit et al. (2015), which showed that oxalic acid and glucose, common root exudates, disrupt 
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organo-mineral bonds, releasing otherwise protected SOC for microbial decomposition. Similarly, 
Zhou et al. (2022) demonstrated that glucose and oxalic acid destabilize SOC through microbial 
respiration, even when firmly bound to mineral surfaces. Increased sugar concentrations in soil 
solutions activate dormant microbial communities, enhancing enzyme production and accelerating 
SOM decomposition. This releases essential nutrients, including nitrogen, phosphorus, and sulfur 
(Gunina & Kuzyakov, 2015). However, as Haichar et al. (2014) noted, the impact of root exudates 
varies based on their composition, with low-molecular-weight compounds such as sugars and 
organic acids inducing more pronounced priming effects. 
Biochar amendment to soil has been shown to trigger positive or negative PE of SOC depending 
on the type of biochar, soil conditions, and the presence of labile substrates (Kuzyakov et al., 2000; 
Luo et al., 2011; Keith et al., 2015; Luo, Zang, et al., 2017). Ameloot (2013) highlighted that adding 
labile organic substrates can accelerate biochar decay, affecting biochar stability in soil and its PE 
of SOC. Biochars produced at lower temperatures promote positive PE, while high-temperature 
biochars lead to minor or negative PE of SOC (Luo et al., 2011; Zimmerman et al., 2011). For 
example, Keith et al. (2015) noted that wood- and sugar cane bagasse-derived biochars (rich in 
lignin) tend to stabilize SOC (negative PE). In contrast, grass-derived biochars (cellulose-rich) 
promoted positive PE of SOC. 
Several mechanisms explain biochar-induced PE of SOC, including co-metabolism, where labile 
biochar fractions enhance microbial activity and SOC mineralization (positive PE), whereas more 
stable biochar fractions may interact with SOC, reducing its accessibility to microbial 
decomposers, resulting in negative PE (Keith et al., 2015; Fang et al., 2015). Additionally, biochar 
in the rhizosphere undergoes accelerated decomposition due to increased microbial activity 
stimulated by continuous root exudates and rhizodeposits (Ameloot, 2013), affecting biochar 
stability and associated mechanisms leading to negative or positive PE of SOC. 
 

1-6 Objectives and hypotheses  

 

This study is divided into two complementary parts.  

Study 1: The role of polysaccharides in soil aggregation and stability   

 The study first compares the stability of polysaccharides (xyloglucan) and monosaccharides 
(glucose) amendments at two different concentrations (50 and 500 µg soil-1). The study aims to 
demonstrate the effect of carbohydrate structure (mono and polysaccharide) and concentration on 
soil CO2 emissions. Secondly, it explores the role of polysaccharides (xyloglucan) and 
monosaccharides (glucose) in soil aggregate formation and stabilization. It is anticipated that 
glucose amendments, because of their simpler structure, will cause an initial spike in CO₂ 
emissions during the early stages of incubation. In contrast, with their more complex structure, 
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xyloglucan amendments are expected to produce a delayed response in CO₂ emissions. 
Furthermore, as more stable carbon sources and effective binding agents, polysaccharides will 
improve soil stability by promoting aggregation.  

Study 2:  δ13C signature of CO2 respired from soils amended with glucose, xyloglucan, and 
biochar 

In the second experiment, which investigates the effects of artificial root exudates on SOC aging 
and the widespread use of biochar in soil amendments, the research aims to explore whether the 
combination of biochar and root exudates produces a distinct SOC priming effect. By utilizing 
Miscanthus-derived biochar from tomato farming systems, this research aims to contribute to 
sustainable soil management practices and address critical gaps in understanding carbon cycling 
and soil stability. 

In this study, glucose amendments are anticipated to abruptly add to the SOC priming effect for a 
short period. However, xyloglucan, a polysaccharide with a more stable carbon source, has a lower 
PE effect than glucose.  

 

2- Material and methods 

2-1 Biochar and soil characterization: 

The biochar utilized in this investigation was manufactured at the Thermo Processes and Emission 
Control in Waste Management and Recycling Teaching and Research Unit (TEER) at RWTH 
Aachen University (Germany). In a muffle furnace, the feedstock—untreated Miscanthus x 
giganteus—was pyrolyzed for ten minutes at 600 °C in a nitrogen atmosphere. The primary 
attributes of the biochar are displayed in Table 1.  

Table 1 Summary of miscanthus biochar properties. 

 

In this study, three different soils were used, which were selected to comprise a range of soil pH 
(4.6-6.5), texture, and organic carbon content (Table 2). The soils consisted of two Luvisols 
collected at 0-30 cm layer. One was sampled at the agricultural research station of the University 
of Bonn at Campus Klein-Altendorf (hereinafter referred to as CKA) (50.37° N, 6.59° E) the other 

Cfix Ash Volatiles H N S O δ13C pH WHC 

(wf-%) (wf-%) (wf-%) (wf-%) (wf-%) (wf-%) (wf-%)  CaCl2  g 100 g-1 

82.30 10.14 7.51 1.72 0.26 0.07 13.65 –13.66 8.96 399 
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(REC) was sampled at the post-lignite mining recultivation area (50.89° N, 6.34° E). The third soil 
was a standard LUFA soil named L2.1, purchased (air-dried and sieved to 2 mm) from the 
Landwirtschaftliche Untersuchungs- und Forschungsanstalt (LUFA, Speyer, Germany).  

The samples were first air-dried and then sieved (2 mm). Soils were kept at room temperature until 
the beginning of the incubation experiments. Table 2 presents the physicochemical properties of 
soils used in this incubation experiment. 

 

Table 2 Physiochemical properties of soils used in the study1. 

 

2-2 Glucose and xyloglucan characterization: 

The D-(+)-Glucose Monohydrate used in this study was purchased from Sigma-Aldrich (Merck)2, 
with a CAS number of 14431-43-7. It is ≥99.5% pure and has a molecular weight of 198.17 g/mol. 
The glucose was used in its crystalline form and dissolved in deionized water before being applied 
to the experiment. The δ13C of Glucose is   
The xyloglucan (Tamarind) used in this study was derived from tamarind seeds purchased from 
Megazyme3 Xyloglucan's CAS number is 37294-28-3, and its purity exceeds 95%. A 1% solution 
has a viscosity of 142 centistokes (cSt). Its monosaccharide composition is as follows: 34% xylose, 
45% glucose, 17% galactose, 2% arabinose, and 2% other sugars. 

The δ13C values for glucose and xyloglucan are (-11.13) and (-26.00).    

  

 
1 BD = bulk density; TOC= total organic carbon; TIC= total inorganic carbon; WHC= water holding 
capacity; NH+4 = ammonium ion; NO3 = nitrate ion; P= phosphate 
2 https://www.sigmaaldrich.com/DE/de/product/sial/49159 
3 https://www.megazyme.com/xyloglucan-tamarind 
 

Soil pH Sand Silt Clay BD TOC TIC WHC NH4
+ NO3 P

CaCl2 (%) (%) (%) gcm-3 (%) (%) g100g-1 mgkg-1 mgkg-1 mgkg-1

CKA 6,50 8,00 77,00 15,00 1,30 1,00 0,00 40,00 0,24 70,90 30,60

REC 7,40 5,00 78,00 17,00 1,50 0,30 1,60 44,00 1,12 21,18 5,34

L2.1 4,60 87,00 8,00 4,00 1,30 0,60 0,00 28,00 0,63 29,70 3,30

https://www.megazyme.com/xyloglucan-tamarind
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2-3 Study 1 - The role of glucose and polysaccharides in soil particles 
aggregation and stability 

2-3-1 Experimental treatments and incubation 

In this study, soils REC and L2.1 were used, and five treatments were elaborated, as described 
below:  

1. Control: Soil only  
2. Soil+G50: Soil with + 50 µg g -1 soil glucose 
3. Soil+G500: Soil + 500 µg g -1 soil glucose 
4. Soil+P50: Soil + 50 µg g -1 soil polysaccharides 
5. Soil+P500: Soil + 500 µg g -1 soil polysaccharides 

These treatments were prepared in a single batch (about 420 g) and pre-incubated for 72 hours at 
23 °C. Afterward, 3 g of dry soil was transferred to 22 ml gas chromatograph vials. The treatments 
were incubated for 31 days at 23 °C, and the water content was maintained at 60% of the water 
holding capacity by periodically dripping deionized water into the vial. Given CO2 flux 
measurements, four replicates were prepared in quadruplicates for each treatment.  

2-3-2 CO2 flux measurements from incubated samples  

On days 1, 2, 4, 5, 8, 11, 15, 19, 25, and 31 of incubation, the CO2 flux of the samples was measured 
using a gas chromatograph (GC-ECD/FID, Clarus 580, PerkinElmer, Waltham, USA, MA). For 
that, the four vials of a single replicate (quadruplicates) were closed at different times: 1h, 4h, 7h 
and 10h before measurement to allow the flux calculation according to the following equation: 

Equation 1    𝐹𝐹 =
𝛥𝛥𝐶𝐶
𝛥𝛥𝛥𝛥×𝑉𝑉×𝑀𝑀

𝑚𝑚
× 1000 × 1000 

in which F denotes the flux of CO2, ΔC/ΔT signifies the alteration in CO2 in parts per million 
(ppm) adjusted for the gas sample and air temperature (273,15 K and 20.8 °C, respectively). V 
denotes the headspace volume in liters, M represents the molar mass of C in CO2, and m denotes 
the quantity of soil in grams of dry weight. 

2-3-3 Soil particle size and stability after incubation 

After incubation, the particle size and stability were analyzed in a laser diffraction particle analyzer 
(LA-950, Horiba, Kyōto, Japan). The particle size range of analysis spans from a few nm to 5 mm. 
To ensure four replicates for each treatment, equal amounts of the replicate quadruplicates were 
combined. These replicates were placed into a plastic cylinder containing 20 ml of deionized water 
and gently stirred manually for homogenization. An aliquot of this suspension was injected into 
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the analyzer, and by continuous stirring, the particles circulated across the flow cell where light at 
two wavelengths (650 nm and 405 nm) was applied to measure the median particle size. Results 
are given after processing scattered light data through a software algorithm utilizing the Mie theory 
(Eshel et al., 2004). Results are given as a volume-based median diameter (Dv50) in μm, with the 
diameter of half of detected particles above this value and the diameter of another half below this 
value (Siebers et al., 2023).  

The particle stability assessment considers that the stirrer's mechanical force in the circulation 
system breaks down soil aggregates, leading to changes in the median particle size over 40 minutes 
of continuous analysis (35 sequential measurements) (Siebers et al., 2023). Particle stability is 
assessed by comparing the differences in median particle size across the 35 measurements to the 
initial measurement. The first 25 measurements were taken in 40-second intervals, whereas the last 
10 were taken in 1-minute intervals. The changes in Dv50 along these sequential measurements 
assess the particles' stability. 

2-3-4 Statistical analysis 

The data in this study are time series, which presents significant complexity for statistical analysis. 
AI tools specialized in statistical analysis from the DataCamp platform were employed to identify 
the most suitable model and perform necessary adjustments. Subsequently, the suggested models 
and adjustments were implemented using the RStudio_(2024.04.02) application. Numerous 
calculations and graphs were also performed using Microsoft Excel. 

2-3-4-1 Glucose and xyloglucan stability 
Various comparisons were made to answer the research questions, and suitable statistical tests were 
chosen based on the comparison and data characteristics. 
The Paired Wilcoxon (Wilcoxon signed-rank) test was used to compare the CO2 concentrations of 
(G50 and G500) and (P50 and P500) and the values of each treatment to the control. 
The Wilcoxon signed-rank test is a non-parametric statistical test used to compare two related 
samples or repeated measurements on the same subjects (Shi et al., 2023). It is beneficial when 
data are not normally distributed, sample sizes are small, or the measurement scale is 
ordinal(Sheskin, 2020). 
The test determines whether the median difference between paired observations differs 
significantly from zero. In this comparison, both daily and cumulative concentrations were studied. 
P-values less than 0.05 were considered significant differences (Rosner et al., 2006).  

2-3-4-2 Soil particle size and soil stability 
 
The purpose of the statistical study was to ascertain whether xyloglucan and glucose treatments 
improved soil stability. As food supplies for microbial populations, it was thought that xyloglucan 
and glucose would be binding agents to promote soil aggregation. This was anticipated to 
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strengthen the soil particles' resistance to crushing during analysis. We tested this by looking at the 
rate at which soil particles were reduced and determining whether the different treatments differed 
significantly. 
 A generalized additive model (GAM) was fitted to each soil type (REC and L2.1). To test this, we 
examined the rate of soil particle reduction and assessed whether there were significant differences 
among the various treatments. 
For each soil type (REC and L2.1), a generalized additive model (GAM) was fitted. 

2-3-4-2-1 The objective of the model 

The goal of the model is to comprehend and forecast how particle size varies over time under 
different treatments. It considers aspects while recording and modifying sounds and effects. This 
technique enables us to understand particle size behavior more accurately. 

2-3-4-2-2 GAM model structure 

Using a statistical model to predict particle sizes accounts for various influencing factors such as 
time, treatment, soil type, and replication, which raw data may not adequately represent. Raw 
measurements often include noise, errors, and confounding effects that obscure the underlying 
relationships between the predictors and the response variable (Wood, 2024). By fitting a model 
like a Generalized Additive Model (GAM), the predictions smooth out these inconsistencies and 
help isolate the effects of key factors, such as time and treatment, ensuring more reliable and 
consistent results. Furthermore, the model addresses non-linear relationships between predictors 
and the response variable that might be overlooked in the raw data (Wood, 2024). The model 
provides generalizable estimates, allowing for more accurate comparisons across treatments and 
capturing subtle differences in how treatments influence particle size over time, thereby enhancing 
the interpretation of reduction rates. 
The gam() function fits a Generalized Additive Model (GAM). The model predicts Particle_median 
using a smooth term for measurment_time and Treatment_Replicate as a factor. This allows us to 
model the non-linear effect of time while accounting for the treatment-replicate combinations. The 
model structure is shown in Figure 1. Libraries such as “mgcv” with the gamm() function to fit the 
model, "dplyr” as part of the tidyverse, and “ggplot2” for creating plots were among the libraries 
used in this section.  
 
 

Figure 1 GAM model structure 

• Response Variable (Particle_median): 

  model_gam_clean <- gam(Particle_median ~ s(measurment_time, k = 10) + 
Treatment_Replicate, data = treatment_soil_data_clean) 
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This is the dependent or response variable that you want to model. In this case, it is the 
median particle size at different time points. 

• Predictors (Independent Variables): 

o s(measurment_time, k = 10): 

 measurment_time is the predictor variable representing the time the 
measurements were taken. The s() function specifies a smooth term for this 
variable, meaning we do not assume a linear relationship between 
measurment_time and Particle_median. Instead, we let the model learn the 
non-linear relationship between time and particle size. 

 The basic dimension, or the number of knots required to match the smooth 
term, is specified by k = 10. Although a greater number gives the model 
more flexibility, it may also make overfitting more likely. 

o Treatment_Replicate: 

This categorical predictor accounts for the interaction between treatment and 
replicate. It is included as a factor (or categorical variable), meaning the model will 
fit a different intercept for each combination of treatment and replicate. Using this 
variable, you can capture the effects of different treatments and replicates on the 
particle size. 

•  Predict Initial and Final Particle Sizes 

In this step, the model is used to predict the particle sizes at time = 0 (the initial time) and 
time 20 minutes (the final time). These predictions are obtained by using the fitted 
Generalized Additive Model (GAM). 

 

Figure 2 Predict Initial and Final Particle Sizes 

 

initial_size_clean <- predict(model_gam_clean, newdata = 
data.frame(measurment_time = 0, Treatment_Replicate = 

treatment_soil_data_clean$Treatment_Replicate)) 
final_size_clean <- predict(model_gam_clean, newdata = 

data.frame(measurment_time = 20, Treatment_Replicate = 
treatment_soil_data_clean$Treatment_Replicate)) 
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o initial_size_clean: This gives the predicted particle size at time=0. The model 
predicts the particles' starting size based on the treatment and replicate values. 

o final_size_clean: This gives the predicted particle size at time = 20 minutes. The 
model estimates the final particle size after 20 minutes using the same factors 
(treatment and replicate). 

2-3-4-3 The Percentage Reduction calculation 

The percentage reduction is calculated by comparing the initial and final predicted particle size 
values. It represents the relative change in particle size as a percentage of the initial size. 

The formula for percentage reduction is: 

Equation 2    Percentage Reduction=Initial Size (Initial Size−Final Size)×100 

Where: 

• Initial Size is the predicted particle size at time= 0. 

• Final Size is the predicted particle size at time=20 minutes. 

• Percentage Reduction represents the relative decrease in particle size over time. 

2-3-4-4 Residuals 

Residuals, the differences between observed values (yᵢ) and predicted values (ŷᵢ), are key to 
evaluating the performance of statistical models (Raschke, 2013). They help assess model fit, with 
smaller residuals indicating a better fit, and can identify systematic patterns or deviations from 
assumptions like normality, homoscedasticity, and independence (Lasfar & Gergely Tóth, 2024). 
Residual analysis also aids in detecting outliers and comparing models, with smaller residuals 
generally favoring one model over another (Son, 2004). 

 

2-3-4-5 Outliers removal 

 
We applied a custom function to remove extreme residual outliers that identify and filter out 
residuals lying beyond a defined threshold of standard deviations from the mean. Specifically, we 
considered outliers residuals more significant than 3 standard deviations above or below the mean 
residual and excluded them from the dataset (Dastjerdy et al., 2023).  
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Outlier removal helps ensure that the model is not disproportionately influenced by extreme data 
points, thereby improving the model's robustness by focusing on most of the data that follows the 
expected pattern. The cleaned dataset, excluding these extreme residuals, was then used for further 
analysis (Kwak & Kim, 2017). 

2-3-4-6 Model evaluation 

Model evaluation is critical in assessing the performance and reliability of the Generalized Additive 
Mixed Model (GAMM) used in this study. Several libraries like "mgcv," "dplyr", "ggplot2", 
"caret," and "nlme" were utilized in this analysis. The assessment uses a variety of metrics and 
visuals to check that the model effectively represents the underlying patterns in the data and 
generalizes well to new data.  

2-3-4-6-1. Root Mean Squared Error (RMSE) 
One popular statistic for regression models is the Root Mean Squared Error, which assesses model 
accuracy by calculating the average magnitude of prediction errors (Hodson, 2022).  
 

Equation 3   RMSE=1ni=1n(yi−ŷᵢ)2 

Where: 
• yᵢ = the observed value (actual value) for the iii-th observation. 
• Ŷᵢ = the predicted value for the iii-th observation (from the model). 
• n = the total number of observations (data points). 

 
 
Lower RMSE indicates better model performance, meaning the predictions are closer to the actual 
values(Chai & Draxler, 2014). 

2-3-4-6-2 Akaike Information Criterion (AIC) 

AIC measures the relative quality of a statistical model for a given dataset. It penalizes the number 
of parameters to balance the goodness of fit and model complexity (Wahyu Triyoso, 2024). 

Equation 4   AIC=2k−2ln(L)2 

Where: 
• k=number of estimated parameters in the model 
• L= maximum likelihood of the model 

Lower AIC indicates a better model, suggesting a good fit with fewer parameters (Bozdogan, 
1987). 
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2-3-4-6-3 Bayesian Information Criterion (BIC) 

BIC is similar to AIC but imposes a more substantial penalty for models with more parameters. It 
is helpful for model comparison, especially when the sample size is large (Cavanaugh, 2016). 

Equation 5   BIC=kln(n)−2ln(L^) 

Where: 
• k = the number of parameters estimated by the model 
• n = the sample size (number of observations) 
• L^= is the maximized value of the likelihood function for the mode 

 
Lower BIC: Indicates a better model, as it suggests a good fit with fewer parameters (Vrieze, 2012). 
 

2-3-4-6-4 Residuals vs. Measurement Time Plot 

 
This plot helps to identify any systematic patterns in the residuals. If the residuals show a pattern 
(e.g., an increasing or decreasing trend), it may indicate that the model has not fully captured the 
relationship between measurement time and the response variable, or that other underlying factors 
are influencing the data (Yu, 2021). 
 

2-3-4-6-5 Autocorrelation (ACF) of Residuals 

 

The autocorrelation function (ACF) evaluates the correlation between residuals at various time 
points or observations. When residuals are autocorrelated, it indicates a time-dependent structure 
that the model has not captured (Parlak et al., 2023). A high level of autocorrelation in the residuals 
implies that the model has not wholly captured the time-dependent structure of the data, implying 
possible model misspecification (F.Dormann et al., 2007). 
 

2-3-4-6-6 Partial Autocorrelation (PACF) of Residuals 

 

The Partial Autocorrelation Function (PACF) of residuals is a statistical tool used in time series 
analysis to measure the correlation between a variable and its lagged values while controlling for 
the effects of intervening lags. When applied to model residuals, it helps assess whether any 
remaining patterns exist in the data that the model has not addressed captured (Yakubu & Saputra, 
2022). 
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2-3-4-6-7 Residuals vs. Fitted Values (Predicted vs. Actual) Plot: 

 

The residuals vs. fitted values plot helps identify whether the model is underfitting or overfitting 
the data. If the model fits well, the residuals should be randomly scattered around zero. Any patterns 
in the plot may indicate model misspecification (Spiegelhalter et al., 2002). 

2-3-4-2 CO2 flux measurements  

Various comparisons were made to answer the research questions, and suitable statistical tests were 
chosen based on the comparison and data characteristics. 

The Paired Wilcoxon (Wilcoxon signed-rank) test was used to compare the CO2 concentrations of 
(G50 and G500) and (P50 and P500) and the values of each treatment to the control. 

The Wilcoxon signed-rank test is a non-parametric statistical test used to compare two related 
samples or repeated measurements on the same subjects (Jesussek, 2025). It is beneficial when data 
are not normally distributed, sample sizes are small, or the measurement scale is ordinal (Sheskin, 
2020). 

The test determines whether the median difference between paired observations differs 
significantly from zero. In this comparison, both daily and cumulative concentrations were studied. 
P-values smaller than 0.05 were accepted as significant differences (Rosner et al., 2006).  

2-3-4-3 soil particle size and stability 

The statistical study sought to ascertain if xyloglucan and glucose treatments had a beneficial effect 
on soil stability. As food supplies for microbial populations, it was thought that xyloglucan and 
glucose would serve as binding agents to promote soil aggregation. This, in turn, was expected to 
increase the resilience of soil particles against crushing during analysis. To test this, we examined 
the rate of soil particle reduction and assessed whether there were significant differences among 
the various treatments. 

 For each soil type (REC and L2.1), a generalized additive mixed model (GAMM) was fitted using 
10-fold cross-validation.  
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2-4 Study 2: δ13C signature of CO2 respired from soils amended with 
glucose, xyloglucan, and biochar 

2-4-1 Experimental treatments and incubation  

This study used soils CKA and L2.1, and six treatments were elaborated, as described below. The 
soil CKA was used instead of REC because of the presence of high concentrations of lignite in 
REC soil. The existence of lignite could act as a new carbon soil and, as a result, complicate the 
CO2 fraction calculation. Treatments in this study are as bellow: 

1-Control: Soil only 

2- BC: Soil + 10 Mg ha-1 biochar  

3- Glucose:  Soil + 500 µg g -1 soil glucose 

4- Polysac: Soil + 500 µg g -1 soil polysaccharides 

5- Glucose + BC: Soil + 500 µg g -1 soil glucose + 10 Mg ha-1 biochar  

6- Polysac + BC: Soil +500 µg g -1 soil polysaccharides + 10 Mg ha-1 biochar  

These treatments were prepared in larger amounts (about 420 g) and pre-incubated for 72 hours at 
23 °C. Thereafter, the equivalent to 3 g of dry soil was transferred to 22 ml gas chromatograph 
vials (for CO2 flux measurements) and the equivalent to 1 g was transferred to 12 ml vials for δ13C-
CO2 measurements. The two sets of samples were incubated in parallel for 31 (CO2 flux vials) or 
33 days (δ13C-CO2 vials) at 23 °C, and the water content of the samples was maintained at 60% of 
the water holding capacity by periodically dripping deionized water into the vial. For CO2 flux 
measurements, the vials were prepared considering four replicates (and their quadruplicates), as 
explained in Study 1. For δ13C-CO2 measurements, four replicates were prepared.  

2-4-2 CO2 flux measurements from incubated samples  

The CO2 flux of the samples was measured on 31 days of incubation following the same procedures 
and calculations described in Study 1.  

2-4-3 Isotope-ratio mass spectrometry analysis of incubated samples for δ13C-
CO2 determination 

The δ13C-CO2 of the incubated samples was measured on days 3, 6, 10, 13, 17, 20, 25, and 33 of 
incubation using a Gas Bench coupled to an isotope-ratio mass spectrometer (IRMS, Delta Plux 
XP, Thermo Fisher Scientific). The vials containing the samples had to be closed 48 hours before 
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the measurement to allow the determination of the δ13C of the respired CO2. Table 3 exhibits the 
correspondence between days of measurements and days of incubation. 

Table 3 Schedule for IRMS analysis. 

 

 

2-4-3-1 Partitioning of CO₂ flux  

From two soils (L2.1 and CKA), the Partitioning of CO₂ flux could only be calculated for L2.1 
soil. This limitation was due to the close value of δ13C-TOC for CKA soil (-27.2), compared to 
δ13C for xyloglucan (-26).   

The partitioning of the CO2 flux in the Glucose ( 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺), BC ( 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝐵𝐵𝐵𝐵), and Polysac 
( 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) treatments were calculated for each δ¹³C-CO2 day according to Maestrini et al. 
(2014), as described in the following equation: 

Equation 6     f = 1 – (δ13Ctreatment – δ13Camendment)/(δ13Ccontrol – δ13Camendment) 

where:  

• f = fraction of CO2 flux derived from the organic carbon amendment (glucose, 
polysaccharide, biochar)  

• δ13Ctreatment = δ13C in the CO2 respired from the treatment  
• δ13Camendment = δ13C of the organic amendment (glucose = –11.13, polysaccharide =  

Time of vial sealing Time of IRMS 
measurement

(day of incubation) (day of incubation)
1st 3rd (1-3td)
4th 6th (4-6th)
8th 10th (8-10th)

11th 13th (11-13th)

15th 17th (15-17th)

18th 20th (18-20th)

23rd 25th (23rd-25th)

31st 33rd (31st-33rd)

Day of incubation 
representation



 

 
18 

 

–26.00, biochar = –13.66)  
• δ13Ccontrol = δ13C in the CO2 respired from the control treatment. 

 
For “Glucose + BC “and “Polysac+ BC” treatments, the contribution of soil CO2 emission ( 
𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝐺𝐺+𝐵𝐵𝐵𝐵  )  and (𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑃𝑃+𝐵𝐵𝐵𝐵  ) was calculated using Equations 7.  

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝐺𝐺+𝐵𝐵𝐵𝐵  𝑂𝑂𝑂𝑂   𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑃𝑃+𝐵𝐵𝐵𝐵   

=
(𝑐𝑐𝑐𝑐2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ (1 + (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 "𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡") (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 "𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡"))

𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐2 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖  "Glucose+ BC" 𝑂𝑂𝑂𝑂 "𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐵𝐵𝐵𝐵 "𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

 
For “Glucose + BC “and “Polysac+ BC”, the contribution of biochar CO2 emission (𝐹𝐹𝐵𝐵𝐵𝐵)  and 
glucose( 𝐹𝐹𝐺𝐺 ) or polysaccharide (𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ) CO2 emissions were calculated using equations 8   and 9 
 
Equation 8 

𝐹𝐹𝐵𝐵𝐵𝐵 =
(𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝐺𝐺+𝐵𝐵𝐵𝐵  𝑎𝑎𝑎𝑎𝑎𝑎   𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑃𝑃+𝐵𝐵𝐵𝐵   ∗ (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 "𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡")

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝐵𝐵𝐵𝐵   

 
 
Equation 9 

𝐹𝐹𝐺𝐺 𝑜𝑜𝑜𝑜 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

=
(𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝐺𝐺+𝐵𝐵𝐵𝐵  𝑎𝑎𝑎𝑎𝑎𝑎   𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑃𝑃+𝐵𝐵𝐵𝐵  ∗ (𝑎𝑎𝑎𝑎𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 "𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡")

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
 

2-4-3-2 Priming Effect calculation using δ13C 

The PE of biochar, glucose, and polysaccharides on SOC in the BC, Glucose, and Polysac 
Treatments were calculated according to Maestrini et al. (2014), as follows:  

Equation 10 

𝑃𝑃𝑃𝑃% =  
(�f soil in the treatment ∗  CO2 − C μg in the treatment4� − 𝑐𝑐𝑐𝑐2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 )

𝑐𝑐𝑐𝑐2𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

 

 
4 C μg in the treatment =  μg carbon molcule in each treatment  

Equation 7 
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The PE in the complete treatments (“Glucose + BC “and “Polysac+ BC”.) was calculated using 
equation 11.  

Equation 11 

PE in “Glucose +  BC “or “Polysac +  BC” tretments = 1 − ((𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝐺𝐺+𝐵𝐵𝐵𝐵  𝑂𝑂𝑂𝑂   𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑃𝑃+𝐵𝐵𝐵𝐵  ) +
glucose( 𝐹𝐹𝐺𝐺 ) or polysaccharide (𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ) + 𝐹𝐹𝐵𝐵𝐵𝐵)  

2-4-4 statistical analysis 

2-4-1 CO₂ emissions in root exudate treatment experiment 

The Wilcoxon rank-sum test (Mann-Whitney U) was used to compare the CO2 concentration 
fractions of each treatment across incubation days, assessing both the control and treatments against 
each other to determine whether significant differences existed. The test was performed using the 
Wilcox.test() function with paired = FALSE, as the comparisons were between independent 
treatments during each incubation interval.  Libraries such as "tidyverse," "readxl" and "dplyr" 
were used in this analysis.  The null hypothesis (H₀) posits that the distributions of CO2 
concentrations are the same between the two treatments, while the alternative hypothesis (H₁) 
indicates a significant difference. A p-value threshold of 0.05 was applied; if p < 0.05, the null 
hypothesis was rejected, indicating a statistically significant difference between treatments (Rosner 
et al., 2006).  

2-4-2 Root exudate treatments and SOC priming effect  

The Wilcoxon rank-sum test (Mann-Whitney U) was employed to compare two groups and assess 
whether their distributions differ significantly. The test was executed using the Wilcox.test() 
function with paired = FALSE, as the comparisons involved independent treatments within each 
incubation interval. Libraries such as "tidyverse," "readxl" and "dplyr" were employed in this 
analysis. The null hypothesis (H₀) posits that the distributions of the SOC priming effect are 
identical between the two treatments, while the alternative hypothesis (H₁) implies a significant 
difference. A p-value threshold of 0.05 was applied; if p < 0.05, the null hypothesis was dismissed, 
indicating a statistically significant difference between treatments (Rosner et al., 2006).  
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3- Results and discussion 

3-1 Study 1 - The Role of glucose and polysaccharides in soil particles 
aggregation and stability 

3-1-1 Glucose and xyloglucan stability 

3-1-1-1 Comparative analysis of daily CO₂ concentration for selected treatments 
The effects of glucose and polysaccharide treatments, each applied at concentrations of 50 and 500 
ug g-1 of soil, were evaluated regarding their impact on CO₂ fluxes. Specifically, the daily and 
cumulative CO₂ flux values for two equivalent concentrations of sugar (G50 vs. P50 and G500 vs. 
P500) were statistically compared to assess the influence of glucose and xyloglucan on CO₂ 
emissions.   
Figures 3 and 4 compare the average daily Soil+G50 vs Soil+P50 CO₂ fluxes in both soil types. 
The Y-axis shows CO₂ concentration in µg g⁻¹soil day⁻¹, and the X-axis shows the incubation days.  
In L2.1 soil, the peak value for Soil+G50 CO₂ fluxes (8.84 µg g⁻¹ soil day⁻¹) appears on the first 
day. In contrast, the peak value for Soil+P50 CO₂ fluxes (5.84 µg g⁻¹ soil day⁻¹) is recorded on the 
second day of incubation, which remains lower than the glucose concentration. Statistical results 
(Table 4) indicate almost no significant difference between these two treatments on the other days 
of incubation. 
For REC soil, the same as L2.1, the significant values primarily occur during the first and second 
incubation days (Table 4). On the first day of incubation, the Soil+G50 CO₂ concentration (5.87 
µg g⁻¹ soil day⁻¹) is the dominant value, while the Soil+P50 CO₂ concentration follows in second 
place with 4.27 µg g⁻¹ soil day⁻¹which is very close to the Control.   
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Figure 3 Distribution of daily CO2 concentration over time for Soil+G50 versus Soil+P50 treatments in L2.1 soil. 

 
 

 
Figure 4  Distribution of daily CO2 concentrations over time for Soil+G50 versus Soil+P50 treatments in REC 

Soil. 
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 Figures 5 and 6 illustrate the average daily CO₂ flux (µg g⁻¹ day⁻¹) for Soil+G500 compared to 
Soil+P500. According to this graph, for both soil types, on the first and second days of incubation, 
the highest average CO₂ concentrations (23 and 30.17 µg g⁻¹ day⁻¹ for L2.1; 45 and 8.80 µg g⁻¹ 
day⁻¹ for REC) are associated with the Soil+G500 treatment. The Soil+P500 treatment, similar to 
the 50 µg g⁻¹ xyloglucan concentration, shows significantly lower fluxes (3.67 and 8.24 µg g⁻¹ 
day⁻¹ for L2.1; 4.34 and 6.34 µg g⁻¹ day⁻¹for REC), peaking on the second day of incubation. Based 
on the statistical results (Table 5), the most significant values for both L2.1 and REC soil are only 
on the first and the second day of incubation (except for days 7 and 10 in L2.1), and the other 
incubation days do not significantly change CO₂ concentration.     
The pick for CO₂ daily flux for polysaccharide treatments occurs on the second day of incubation, 
measuring 8.23 µg g⁻¹ day⁻¹ for L2.1 soil and 6.34 µg g⁻¹ day⁻¹ for REC soil. 
 

 
Figure 5 Distribution of daily CO2 concentration over time for Soil+G50 versus Soil+P50 treatments in L2.1 soil 
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Figure 6 Distribution of daily CO2 concentrations over time for Soil+G50 versus Soil+P50 treatments in REC Soil. 

 

Table 4  Results of the Wilcoxon test comparing Soil+G50 and Soil+P50 treatments for each incubation day. 
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Table 5 Results of the Wilcoxon test comparing Soil+G500 and Soil+P500 treatments for each incubation day. 

 
 
 

3-1-1-2 Comparative analysis of cumulative CO₂ concentration for selected treatments 
Another research question was to compare the cumulative CO2 fluxes emitted from glucose and 
polysaccharide treatments to determine which treatment emits a higher total CO2. As shown in 
Figure 7, the cumulative fluxes for both Soil+P50 and Soil+G50 treatments in L2.1 are very close 
in value (86.82µg g⁻¹ day⁻¹ and 84.09 µg g⁻¹ day⁻¹), and they only exhibit a significant difference 
on the first and second days of incubation (Table 6) and continue to be substantial until the seventh 
day in REC soil. Interestingly, the cumulative flux of polysaccharides for L2.1 is slightly higher 
than that of glucose.  
Figure 8 compares the cumulative fluxes of Soil+P50 and Soil+G50 for REC soil. Like L2.1, the 
Soil+P50 and Soil+G50 treatments show close trends and values compared to the control. 
However, the dominant flux here belongs to Soil+G50 (85.21 µg g⁻¹ day⁻¹), with very close values 
to the Control (85.29 µg g⁻¹ day⁻¹). The Soil+P50 CO2 concentrations (73.57 µg g⁻¹ day⁻¹) are even 
lower than the control.  
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Figure 7 Distribution of cumulative CO2 concentration for Soil+G50 vs Soil+P50 Treatments over time in L2.1 

soil. 

 

 
Figure 8 Distribution of cumulative CO2 concentration for Soil+G50 vs Soil+P50 Treatments over time in REC 

soil. 

 
Figures 9 and 10 illustrate the Cumulative CO2 Concentration distribution for the Soil+G500 and 
Soil+P500 treatments for L2.1 and REC soils. Based on the data represented for both soils, 
Soil+G500 has a higher CO2 concentration (187.87 µg g⁻¹ day⁻¹ and  142.85 µg g⁻¹ day⁻¹ ) than the 
Soil+P500 treatment (179.82 µg g⁻¹ day⁻¹ and 114.03 µg g⁻¹ day⁻¹) for L2.1 and REC soils, 
respectively. However, values of cumulative Polysaccharide and glucose fluxes are close in L2.1 
soil.  
Statistical analysis (Table 7) indicates that Significant comparisons for Soil+G500 and Soil+P500 
treatments extend to the fourth day in L2.1 soil and the fifteenth day in REC soil.  
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Figure 9 L2.1 distribution of cumulative CO2 concentration for Soil+G500 vs Soil+P500 treatments over time. 

 

 
Figure 10 REC distribution of cumulative CO2 concentration for Soil+G500 vs Soil+P500 treatments over time. 

3-1-1-3 Soil differences and their potential impact on CO₂ fluxes 
 
The soil's physiochemical properties (Table 2) in this study are crucial in influencing the observed 
CO₂ fluxes and microbial activity (Moitinho et al., 2021). These properties, including pH, 
sand/silt/clay composition, bulk density (BD), total organic carbon (TOC), water holding capacity 
(WHC), and nutrient contents (NH₄⁺, NO₃⁻, P), differ significantly between the two soils (REC and 
L2.1), which may explain the variations in the observed CO₂ flux patterns during the incubation. 
Both daily and cumulative  
While L2.1 soil has a higher sand content (87%) and lower water-holding capacity (WHC), which 
suggests reduced microbial activity due to drier conditions, the increased TOC may compensate 
for this drawback. Soil texture affects water-holding capacity and microbial habitats (Moitinho et 
al., 2021). The sandier texture of L2.1 might enhance oxygen diffusion, supporting aerobic 



 

 
27 

 

respiration and allowing for more efficient carbon breakdown, resulting in higher CO₂ fluxes (Yang 
et al., 2018). 
 

Table 6 Results of the Wilcoxon test comparing L2.1 cumulative values of  Soil+G50 vs Soil+P50 treatments for 
each incubation day. 

 
 
Total Organic Carbon (TOC) is significantly higher in L2.1 soil (0.6%) than in REC soil (0.3%), 
suggesting that L2.1 soil has more organic material available for microbial degradation and 
respiration. This higher organic content in REC soil likely contributed to the higher CO₂ fluxes 
observed in the study (Ashik Rubaiyat et al., 2023).  
Although L2.1 soil has a lower water holding capacity (WHC) of 28% compared to REC soil’s 
44%, it still exhibits higher CO₂ emissions during the incubation period. This could be due to a 
higher organic carbon content (TOC) and soil texture in L2.1 soil, which can influence microbial 
activity despite lower moisture retention (Tang, Yang et al., 2022). The sandier texture of L2.1 soil, 
which allows for better oxygen diffusion, could create more favorable conditions for aerobic 
microbial respiration and enhance CO₂ fluxes, even without high moisture (Yang et al., 2018). The 
microbial community in L2.1 soil might be better adapted to more aerobic conditions, where 
microbial degradation of organic material remains efficient despite lower moisture availability 
(Keiluweit et al., 2017). Thus, the higher CO₂ fluxes in L2.1 soil could be attributed to its higher 
organic carbon content, soil texture, and microbial adaptation to the soil environment rather than 
solely to moisture availability. 
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Table 7 Results of the Wilcoxon test comparing REC Cumulative values of  Soil+G500 vs Soil+P500 treatments 
for each incubation day. 

 
 
Nutrient availability can strongly influence microbial activity and, thus, CO₂ flux (Pihlblad et al., 
2023). Although REC soil has higher nutrient content and better moisture retention, these factors 
alone did not outweigh the impact of higher organic carbon in L2.1 soil. The difference in microbial 
communities and their adaptation to the soil environment may also affect the observed CO₂ 
emissions. 
The pH of the two soils significantly influences microbial activity and, consequently, CO₂ flux 
(Ashik Rubaiyat et al., 2023). While pH plays a vital role in microbial activity, other factors like 
soil texture, bulk density, and the presence of nutrients (e.g., nitrogen and phosphorus) are equally 
important. L2.1 soil, despite its acidic pH, may offer other favorable conditions for microbial 
activity, such as higher porosity and better oxygen availability, which can lead to increased CO₂ 
emissions. 

3-1-1-4 Implications for CO₂ fluxes and treatment effects 
The results in the 5.1.1 and 5.1.2 sections show significant differences in CO₂ concentrations 
between glucose and polysaccharide treatments (xyloglucan) across different concentrations (50 
µg g⁻¹ and 500 µg g⁻¹). In particular, glucose treatments exhibited notably higher CO₂ fluxes, both 
daily and cumulative, compared to polysaccharides.  
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3-1-1-4-1 Glucose vs. polysaccharide CO₂ emissions 

 
Glucose fractionss consistently led to higher CO₂ concentrations than polysaccharide fractions, 
with a notable peak observed in L2.1 and REC soils during incubation's first and second days. The 
initial high emissions associated with glucose can be attributed to its labile nature (Gunina & 
Kuzyakov, 2015; Demoling et al., 2007). Soil microbes rapidly metabolize glucose, producing 
swift microbial respiration and CO₂ (Shimizu et al., 2015). This aligns with previous studies 
indicating that glucose is a powerful carbon source for soil microorganisms (Kuzyakov, 2006). 
Conversely, the polysaccharide treatment (xyloglucan) displayed lower CO₂ fluxes. This is likely 
due to polysaccharides' more complex and recalcitrant nature, which require a longer time for 
microbial degradation (Gunina & Kuzyakov, 2015; Ravachol et al., 2016). As larger and more 
chemically complex molecules, polysaccharides are not as readily available to soil microbes as 
glucose, which accounts for the slower and lower CO₂ emissions throughout the incubation period 
(Saha et al., 2023; Stubbusch et al., 2024).  

3-1-1-4-2 Trends over time and cumulative CO₂ emissions 
 
Both glucose and polysaccharide treatments exhibited a decrease in CO₂ emissions over time, 
which is expected as the initial surge of microbial activity from the labile carbon source (glucose) 
subsides(Gunina & Kuzyakov, 2015; Demoling et al., 2007). In L2.1 soil, glucose emissions 
remained higher than those from polysaccharide treatments throughout the entire incubation period, 
although peak CO₂ concentrations occurred early in the process. Similarly, in REC soil, the highest 
CO₂ fluxes for glucose treatments were observed on the first and second days, after which the CO₂ 
concentrations declined. 
 
The cumulative CO₂ emissions (Figures 7 and 9) further support these trends, with glucose 
treatments producing significantly higher cumulative CO₂ fluxes than polysaccharide treatments. 
Notably, in L2.1 soil, the cumulative fluxes for glucose and polysaccharide treatments were 
relatively close, with glucose slightly surpassing polysaccharides. In REC soil, the cumulative CO₂ 
flux for glucose treatments remained higher, while polysaccharide treatments displayed relatively 
stable, lower emissions over time. 

3-1-1-4-3 Statistical analysis 
The statistical analysis, particularly the Wilcoxon test results, demonstrated that the differences in 
CO₂ emissions between glucose and polysaccharide treatments were statistically significant on the 
first and second days of incubation for both L2.1 and REC soils. This suggests that the availability 
of glucose as a carbon source induces a rapid microbial response, which is not as pronounced with 
the polysaccharide treatment (Gunina & Kuzyakov, 2015; Sinsabaugh et al., 2013). However, as 
the incubation period progressed, the differences between the treatments became less significant, 
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reflecting the depletion of the labile carbon sources and a return to the decomposition of more 
recalcitrant soil organic carbon (Blagodatskaya & Kuzyakov, 2008; Lehmann & Kleber, 2015). 
 

3-1-1-5 Assessment of daily and cumulative CO₂ concentration in comparison to the 
control 
 
Another crucial aspect of the study involved comparing the treatments with the control group to 
assess their soil stability. As illustrated in Figures 11 and 12, the highest CO2 flux was recorded 
during the initial days of incubation for the Soil+G500 treatment. Although polysaccharides 
typically peak later than glucose, they never attain the flux levels of glucose. 
 The statistical analysis revealed that nearly all treatment fluxes (daily and cumulative) 
significantly differed from the control values (Table 8). There are some exceptions in this regard. 
For L2.1 and REC soil, on the first day of incubation, the Soil+P50 treatment shows insignificant 
values. In REC, the Soil+P500 treatment also exhibits similar behavior in CO2 flux. Since 
polysaccharides have a more complex structure, their consumption by microorganisms will take 
longer than that of glucose; hence, this result is expected (Ravachol et al., 2016). The Soil+G50 
treatment from day 15 onward is insignificant, which can be explained by the low concentration of 
glucose and the possibility of completely consuming glucose by microorganisms.  
 

 
Figure 11 Distribution of daily CO2 concentration for all treatments over time in L2.1 Soil. 
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Figure 12 Distribution of daily CO2 concentration for all treatments over time in L2.1 Soil. 

 

Table 8 Results of the Wilcoxon test comparing all treatments vs control for each incubation day. 
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The following graphs, illustrated in Figure 13 and 14, depict the differences between each treatment 
and the control for each incubation day. As shown in the figure, on days 1, 2, and 4, the Soil+G500 
treatment exhibits the most significant value. Although CO2 fluxes have decreased notably from 
day 7 onward, the Soil+P500 treatment displays the most dominant values. From day 19, these 
treatments (Soil+G500 and Soil+P500) slightly differ. Finally, on the last day of incubation, the 
Soil+P500 treatment exhibits the highest difference compared to the control. An intriguing point is 
that even on the final day of incubation, the L2.1 Soil+G500 treatment still shows a significant 
difference from the control, with Soil+P500 ranking second. A substantial question remains: Which 
treatment produces the highest cumulative CO2 emissions? 
 
Comparing the cumulative values shown in Figures 13 and 14 indicates that the CO2 fluxes of 
Soil+G500 for both soils (142.85 in REC and 187.78 in L2.1) are generally more significant than 
those of Soil+P500 (114.03 in REC and 179.82 in L2.1). However, the difference between 
soil+G500 and soil+P500 is slight in L2.1 soil. Polysaccharides are more stable in soil, allowing 
them to persist longer (Stubbusch et al., 2024).  
 

 
Figure 13 L2.1 Cumulative CO2 concentration. 

 
Figure 14 REC Cumulative CO2 concentration. 
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Figure 15  Daily CO₂ Concentration difference in comparison to the control. number 1 shows the most enormous 
difference, and as the numbers increase, the difference becomes smaller. “N.S” here means the difference with 
control has not been significant. (day1-15) 
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Figure 16 Daily CO₂ Concentration difference in comparison to the Control. number 1 shows the most enormous 
difference, and as the numbers increase, the difference becomes smaller. “N.S” here means the difference with 
control has not been significant.(day 19-31) 

 

3-1-2 The Role of polysaccharides in soil aggregation and Stability 
Figure 17 illustrates average median particle size changes over 10 minutes for various treatments 
applied to the L2.1 soil type. The x-axis represents the measurement time (minutes), while the y-
axis shows the average median particle size (μm). The plot displays five treatments and one control, 
each represented by a unique color. 
 
The horizontal dashed line at 20 μm indicates the boundary between small macroaggregates (<20 
μm) and large microaggregates (20–250 μm). The text annotations further clarify the distinction 
between these categories, emphasizing the effect of treatments on changes in particle size. 
Soil+G500 and Soil+P50 generally exhibit smaller median sizes and mostly fall into the small 
macroaggregates category. 
 
According to this graph, the L2.1 soil type shows a distinct downward trend in particle size over 
time, with the effects of particular treatments being more noticeable. This implies that the 
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treatments have an impact on the aggregation process and soil structure, which may have an impact 
on the physical traits and attributes of the soil. 

 
Figure 17 Soil particle size in time for L2.1 soil. 

 
The REC soil type graph (Figure 18) illustrates the changes in particle size over 10 minutes for 
four different treatments. All treatments consistently decrease particle size; they even reach the 
area of small macroaggregates. The Soil+P500 treatment shows the largest median size, with 
particle sizes approaching 20 μm but remaining above it for most of the observation period.  
The comparison between the L2.1 and REC soil types reveals distinct differences in the behavior 
of particle size over time under the same treatments. In both soil types, the particle size decreases 
over time for all treatments, but the rate of decrease and the final particle size show some variation 
between the two soils. 
For the L2.1 soil type, treatments result in a more pronounced and rapid particle size reduction 
(from 30.53 to 37.22 and 23.41 to 27.80) for different treatments.  The particle size was reduced 
by around 10 μm by the end of the 10-minute observation period. In contrast, the REC soil type 
displays a slightly slower particle size reduction rate (starting from 20.69 to 29.62 and ending from 
21.80 to 18.29) around 8μm.   
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Figure 18 Soil particle size in time for REC soil. 

 
We examined the GAM model's results (Table 9 and Figure 19) to determine whether any specific 
treatment significantly affects the rate of soil particle reduction (soil stability). Based on these 
results, the Control reduction rates in REC and L2.1 soil are 31.45% and 36.18%, respectively. 
Generally, L2.1 soil experiences a higher rate of size reduction than REC. In REC soil, the 
reduction rate varies between 19.1% and 34.7%, all lower than the control, with the smallest 
reduction rate occurring in the Soil+G500 treatment. According to our theory, the smallest 
reduction rate in soil indicates the most effective treatment for soil stability. Interestingly, 
Soil+P500 exhibits a more significant reduction rate than the control, suggesting this treatment 
adversely affects soil particle stability. In L2.1 soil, this rate changes from 30.18% to 32.59%, 
showing more minor fluctuations compared to L2.1, with the most stable particles belonging to 
Soil+P500 and Soil+P50, the latter having a slight difference that places it in second. Soil+P500 is 
the most stable treatment in one soil type but the most unstable in another. What could be the 
possible reasons for this behavior? 
 

Table 9 Results of the GAM model for the soil particle reduction rate (%) across each treatment and control for 
two soil types. 
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Figure 19 Reduction rate of each treatment in two soil types. 

 

3-1-2-1 Implications for the role of polysaccharides in soil aggregation and stability 
A similar study that measured soil particle sizes before incubation, such as Sader (2024), 
investigated L2.1 and REC soils with xyloglucan amendment. Her findings indicate that soils 
amended with xyloglucan have larger aggregates than the control. This observation may also apply 
to glucose treatment.  
Since soil aggregation is a dynamic process, the formation and disintegration of aggregates occur 
over time and aggregate size can change during incubation(Rillig et al., 2017). The addition of 
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readily available carbon sources like glucose can stimulate microbial activity (Sarker et al., 2022; 
Li et al., 2020; Gunina & Kuzyakov, 2015), which could, in turn, affect aggregate stability and size 
over time. Furthermore, incubation conditions, such as wetting and drying cycles, can impact 
aggregate stability (Evans, 1954). We also know that polysaccharides, especially xyloglucan, act 
as binding agents to promote aggregation (Cania et al., 2020; Galloway et al., 2018; Read et al., 
2003; Bacic et al., 1986). All this argument suggests that as sugar sources remain in the soil longer, 
they improve soil aggregation and stability (Traoré et al., 2000). As a result, after incubation, 
treatments that still contain sugar sources like polysaccharide amendments may yield better 
aggregation.  
Another important point is the structural difference between L2.1 and REC soil, which are mainly 
sandy and silty soils, and the nature of laser diffraction soil particle analysis. As L2.1 particles are 
bigger, they settle down faster during the soil particle analysis compared to REC soil. As a result, 
they show a faster median soil size reduction, especially when we consider the raw data (Figures 
17 and 18). Rec soil, on the other hand, has smaller soil particles, so it shows a lower soil size 
reduction rate. But when we look at the result of the GAM model (figure 19), we see that L2.1 is 
more stable, and this is REC that shows more fluctuations in the reduction rate.  Furthermore, we 
should consider that the outcome of laser diffraction analysis results from a random collision of 
laser beams with a particle, whether small or large, at a specific time.  It also depends on the feeding 
liquid and may show different fluctuations if we feed the machine with another liquid from the 
same sample. Finally, the soil particle size median resulting from this method may not be accurate 
enough to study the trend of soil reduction sizes.       
In conclusion, evaluating amendment impacts on soil aggregation and stability is best 
accomplished by assessing them during the preincubation stage. This guarantees that the soil has 
not been deprived of more labile sugar sources and has had sufficient time for microbial activation 
(Kerner et al., 2023). Also, some other methods that examine soil particles in the solid phase, like 
Scanning electron microscopy (SEM), could be beneficial in identifying aggregate sizes for soil 
with larger particles (Amelung et al., 2023). 

3-1-2-2-1 Soil Texture and Physicochemical Properties 
L2.1 soil has higher total organic carbon (TOC) content (0.6%) compared to REC soil (0.3%). The 
higher TOC in L2.1 soil likely enhances microbial activity, which contributes to the stabilization 
and aggregation of soil particles, promoting the formation of more stable soil aggregates (da Silva 
et al., 2022). In contrast, despite having a higher moisture content and better nutrient retention, 
REC soil showed more fluctuation in particle size reduction. This could indicate that while 
moisture retention helps maintain soil structure, it might not be as effective in promoting stable 
aggregation compared to the higher organic carbon content of L2.1 soil (Six et al., 2004); this could 
later be better explained when we compare different concentrations of sugar treatments and their 
effect of soil particles reduction. 

3-1-2-2-1 Impact of Glucose and Polysaccharides 
 
Glucose treatments (Soil+G50 and Soil+G500) generally exhibited lower reduction rates, likely 
due to the easily degradable organic material that promotes microbial activity (Gunina & 
Kuzyakov, 2015; Demoling et al., 2007). However, the polysaccharide treatments (Soil+P50 and 
Soil+P500) had varying effects. For REC soil, Soil+P500 in particular led to a more notable 
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decrease in particle size, whereas Soil+P50 had less noticeable impacts. These results imply that 
the chemical nature of the polysaccharides and the soil's capacity to hold them for microbial 
digestion determine their impact and permanence. This ability is visible in REC soil when 
Soil+G500 has the lowest reduction rate, as it is more available for microbial processing and in a 
more significant concentration than Soil+G50.   
Interestingly, while glucose treatments (Soil+G50 and Soil+G500) resulted in higher cumulative 
CO₂ fluxes, polysaccharides (Soil+P50 and Soil+P500) showed a more lasting impact. This 
suggests that whereas polysaccharides may gradually enhance soil structure, glucose's effects on 
soil aggregation may only last a short while. These results are in line with earlier research on soil 
stabilization (Sarker et al., 2022), which highlights the role polysaccharides play as short-term 
binding agents that support soil aggregate stabilization over the long run.  
However, polysaccharides such as xyloglucan (Soil+P50) have a distinct role due to their complex 
structure and slower rates of breakdown. The effects on soil aggregation are therefore more gradual 
and persistent.  This is especially evident in the Soil+P500 treatment, where polysaccharides 
seemed to stabilize soil aggregates, particularly in L2.1 soil, as indicated by the more minor 
fluctuations in particle size reduction in this treatment compared to glucose treatments. 
The study concludes that although while L2.1 soil retains less moisture, its increased organic 
carbon content provides more substantial particle size reductions and improved soil aggregation 
stability. On the other hand, REC soil showed more notable variations in particle size decrease due 
to its increased moisture content, suggesting more variability in soil stability. considering  both 
soils reacted differently to the treatments highlights the need of taking the soil's characteristics into 
account when choosing additives to improve its stability and structure.  
The study's findings highlight how crucial it is to comprehend how different soil types and additives 
affect soil aggregation and particle size stability.  The findings suggest that although glucose and 
polysaccharides can significantly impact particle size and CO₂ fluxes, the response highly depends 
on the soil's inherent properties, such as total organic carbon, texture, and moisture content. Future 
studies should concentrate on understanding the microbial mechanisms driving these changes to 
optimize soil management practices for enhancing soil health and sustainability. 
 

 3-1-2-1 Implications for the role of polysaccharides in soil aggregation and stability 

3-1-2-1-1 Effects of Sugar treatments and incubation process 
Aggregates develop and disintegrate throughout time, making soil aggregation a dynamic process 
(Rillig et al., 2017). Aggregate stability may also be impacted by incubation parameters including 
wetting and drying cycles (Evans, 1954). Adding readily available carbon sources, like glucose, 
stimulates microbial activity (Sarker et al., 2022; Li et al., 2020; Gunina & Kuzyakov, 2015), 
affecting aggregate stability and size over time. Polysaccharides, especially xyloglucan, are binding 
agents that promote aggregation (Cania et al., 2020; Galloway et al., 2018; Read et al., 2003; Bacic 
et al., 1986). This indicates that as sugar sources persist in the soil, they enhance soil aggregation 
and stability (Traoré et al., 2000). Recent studies have demonstrated that amendments with 
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polysaccharides, particularly xyloglucan, can significantly influence soil aggregate size and 
stability. For instance, Sader (2024)5 observed larger aggregates in xyloglucan-amended soils 
compared to controls, a finding that may also apply to glucose treatments. Consequently, treatments 
that retain sugar sources, such as polysaccharide amendments, may lead to improved aggregation 
after incubation. 
 
Glucose treatments (Soil+G50 and Soil+G500) generally exhibited lower reduction rates, likely 
due to the easily degradable organic material stimulating microbial activity (Gunina & Kuzyakov, 
2015; Demoling et al., 2007). Polysaccharide treatments (Soil+P50 and Soil+P500) had varying 
effects, with Soil+P500 resulting in a more significant reduction in particle size for REC soil. These 
findings suggest that the persistence and impact of polysaccharides vary based on their chemical 
structure and the soil's capacity to retain them for microbial processing. While glucose treatments 
resulted in higher cumulative CO₂ fluxes, polysaccharides demonstrated a more lasting impact on 
soil structure. This indicates that glucose's effects on soil aggregation may be temporary, whereas 
polysaccharides could sustainably enhance soil structure over time, corroborating previous studies 
on soil stabilization (Sarker et al., 2022). 
 

3-1-2-1-2 Soil texture, physicochemical properties, and analysis considerations 
 
The texture differences between L2.1 (sandy) and REC (silty) soils influence their behavior during 
laser diffraction soil particle analysis. L2.1 larger particles settle more quickly during the analysis, 
demonstrating a faster median soil size reduction in the raw data (Figures 17 and 18). In contrast, 
with its smaller particles, REC soil exhibits a slower soil size reduction rate. However, the GAM 
model results (Figure 19) indicate that L2.1 is more stable, while REC experiences more significant 
fluctuations in the reduction rate.  
L2.1 soil's higher total organic carbon (TOC) content (0.6%) compared to REC soil (0.3%) likely 
enhances microbial activity, contributing to the stabilization and aggregation of soil particles (da 
Silva et al., 2022).  
 

3-1-2-1-3 Recommendations for future research 
 
It is advised to conduct evaluation at the preincubation stage in order to compare the effects of 
amendments on soil stability and aggregation. According to Kerner et al. (2023), this method 
guarantees enough time for microbial activation without exhausting labile sugar sources.  
Additionally, methods that examine soil particles in the solid phase, such as Scanning Electron 
Microscopy (SEM), could be beneficial in identifying aggregate sizes for soils with larger particles 
(Amelung et al., 2023). 

 
5 ”Sader M, Schrey SD, unpublished data” 
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when we compare L2.1 and REC soils react to different treatments, the study emphasizes how 
crucial it is to take soil characteristics into account when choosing additions to improve soil 
stability and structure. The results highlight the intricate interactions among soil types, 
amendments, and how they affect particle size stability and soil aggregation. Future research should 
focus on understanding the microbial mechanisms driving these changes to optimize soil 
management practices for enhancing soil health and sustainability. 

3-1-2-2 model validation 
The GAM model's performance is assessed using several evaluation metrics: the AIC (Akaike 
Information Criterion), the BIC (Bayesian Information Criterion), and the RMSE (Root Mean 
Squared Error) (Table 10). 
 

3-1-2-2-1 AIC, BIC and RMSE 
Generally, smaller AIC and BIC values suggest a better fit for the model (Vrieze, 2012; Bozdogan, 
1987). Comparing the AIC and BIC values for the treatments and soil types demonstrates that the 
Soil+G50 and Soil+G500 treatments in L2.1 soil, have higher values for both AIC and BIC, 
suggesting that they are the least suitable models for the treatments. 
The RMSE value indicates the average size of the prediction errors. A lower RMSE signifies better 
model predictions (Chai & Draxler, 2014). For example, Control in L2.1 and Soil+P500 in REC 
soil have the lowest RMSE (0.29 and 0.33), indicating that they fit the observed data more 
accurately than others. Treatments like soil+G500 (0.60) exhibit a higher prediction error.  

3-1-2-2-2 Residual analysis 
The residuals analysis evaluates whether the model has captured all the patterns in the data and 
whether there are any systematic errors. 
 

A. Residuals vs. Measurement Time Plot  
 
Figure 20 shows the residuals (differences between observed and predicted values) versus 
the fitted values (predicted values from the model) for two soil types, L2.1 and REC. The 
dots represent different treatments, with each color representing a different treatment. 
Ideally, the residuals should be randomly scattered around zero without any noticeable 
pattern, which indicates that the model has captured most of the underlying data structure 
and that no systematic errors are present (Kutner et al., 2004). For both soil types, the 
residuals are evenly distributed, indicating that the model has successfully fitted the data. 
The model has effectively taken into consideration the primary patterns in the data if the 
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residuals show no notable trends or curved forms (Hair et al., 2022). This is further 
supported by the plot's smoothness, which shows no signs of directional drift.  
 
While there is a general scattering of points, the residuals for some treatments in REC soil 
show slight groupings, especially around specific values on the x-axis. This might suggest 
some unexplained variability in the data the model has not fully captured (Gujarati et al., 
2012). Observing patterns in the residuals, such as the blue line not being entirely horizontal 
(indicating slight curvature), could signify a non-linear relationship that the model has not 
thoroughly addressed (Fox, 2015). While this may not be a compelling case in this plot, 
some residuals still show slight curvature, indicating potential challenges in 
accommodating certain complexities within the data. 
 

 
Figure 20  Residuals vs. measurement time by soil types. 

 

B. Residuals vs. Fitted Values Plot 
 

 In Figure 21, we observe the relationship between the fitted values (predicted by the model) on 
the x-axis and the residuals (the differences between observed and predicted values) on the y-axis. 
Each point represents a different measurement for a specific treatment, with different colors 
indicating different treatments. 
The points are randomly scattered around zero without revealing any significant patterns, a positive 
sign that the model does not experience major misspecification. Random scatter indicates no 
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systematic error in the model and has successfully captured the underlying data patterns (Kutner et 
al., 2004). Neither the L2.1 nor the REC plots display clear, non-random patterns in the residuals, 
which implies that the model has sufficiently captured the relationship between the predictors and 
the response variable.  The red line fitted through the points represents a trend or relationship 
identified by the model. The smoother curve implies that the GAM model, which employs smooth 
functions, effectively addresses the data's non-linearity well. 
 
The L2.1 residuals have a slight U-shaped curvature (around the middle of the graph). This suggests 
a possible nonlinearity that the model could not fully capture, implying that the relationship might 
need additional terms or a different modeling approach (e.g., adding a polynomial term or further 
smoothing) (Fox, 2015). 
The REC plot shows a clustering of points, particularly toward the lower fitted values. These 
clusters suggest that certain factors may influence these observations, which the model has not 
fully captured. These residual clusters also indicate that the model might have overlooked some 
underlying patterns specific to the REC soil type (Gujarati et al., 2012). 
There are signs of non-linearity (in L2.1) and clustering in the residuals (in REC), suggesting that 
the model may benefit from additional refinements or the inclusion of more complex terms. The 
increasing variability in residuals with higher fitted values indicates that the model does not 
effectively capture the full range of data performance (Hair et al., 2022). 

A. ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function) of 
Residuals 

The ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function) of residuals 
(Figure 22) are used to determine if your model's residuals are time-dependent (Box et al., 2016). 
In ideal model validation, residuals should be independent and exhibit no autocorrelation, 
indicating that the model has captured all patterns in the data (Shumway & Stoffer, 2017). 
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Figure 21 Residuals vs. fitted values by soil types. 

 
○ ACF  

 In an ideal scenario, we want to see that the residuals have no autocorrelation in the ACF 
graph, meaning that the model missed no systematic pattern (Box et al., 2016). In this plot, 
the bars for the lags gradually decay to zero without showing any sustained spikes. The 
values approach zero and stay close to zero across most lags. 
There are few or no spikes after lag 0. If the residuals quickly decay towards zero after the 
first few lags, the model fits the data well and has captured the relevant temporal structure 
(Shumway & Stoffer, 2017). This is observed in the graph, as the values rapidly decrease 
after lag 0. The lack of significant autocorrelation suggests that the model has appropriately 
captured the underlying structure of the data.  

○ PACF  
In an ideal scenario, the PACF plot would show no significant correlations at lags beyond 
the first few lags, indicating that the model has captured the necessary time dependencies 
(Box et al., 2016). The PACF plot suggests that most bars are near zero, which is a good 
sign. The values do not show significant spikes beyond lag 0, which indicates that no 
additional time-dependent structure is left in the residuals. The model seems well-fitted as 
there are no significant spikes or patterns in the PACF, and residuals quickly drop to zero 
after lag 0. 
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Figure 22 ACF and PACF of residuals. 

 

3-2 Study 2: δ13C signature of CO2 respired from soils amended with 
glucose, xyloglucan, and biochar 

 3-2-1 CO₂ emissions in root exudate fractions  
 
The primary concern regarding CO₂ emission concentrations from GC analysis, as highlighted in 
the "Role of Polysaccharides in Soil Aggregation and Stability" experiment, is that the measured 
CO₂ reflects a combination of emissions from different soil sources, including soil, glucose, and 
polysaccharides (Wu et al., 2024; Ray et al., 2020). Furthermore, in the second study, biochar, 
another key contributor to CO₂ emissions, is added to the potential sources. However, in many 
studies, biochar amendments have resulted in the reduction of CO2 emissions, especially in more 
extended incubation periods (Yang et al., 2020; Deng et al., 2024; Wang et al., 2020 ). 
Consequently, when we report the CO₂ concentration for a particular treatment, we indicate the 
total emissions from all sources. Additional methods are necessary to distinguish the contribution 
of each carbon source. We can accurately quantify the CO₂ emitted from each carbon source by 
employing 13C isotopic calculations based on CO₂ concentrations analyzed via GC and the 13C 
isotopic values for each treatment determined through IRMS analysis (Kuzyakov, 2006). This 
method lets us directly compare carbon emissions from each source (Fry, 2019). The question is 
whether the varied use of biochar amendment for soil improvement, particularly for agricultural 
purposes, will influence the effect of root exudate amendments (specifically glucose and 
polysaccharide amendments). Do soils amended with root exudates behave differently with or 
without biochar on carbon emissions and, more generally, the priming effect of soil organic carbon?   
 
Figure 23 illustrates the daily concentration of CO₂ generated from Glucose, Glucose + Biochar, 
Polysaccharide (xyloglucan), and Polysaccharide + Biochar fractions in L2.1 soil. The x-axis 
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shows the incubation days, while the y-axis represents the concentration of grams of carbon 
released from CO₂ in micrograms per gram of soil.  
Figure 17 shows that on the second day of incubation, the emissions from Glucose and Glucose + 
Biochar fractions (31.87 and 30.97µg g-1soil) are considerably higher than the values for 
Polysaccharide and Polysaccharide + Biochar (10.84 and 10.97 µg g-1soil). As incubation 
continues, the concentration of released carbon decreases, reaching values of 0.1, 0.09, 0.24, and 
0.18 on the last day, corresponding to Glucose, Glucose + Biochar, Polysaccharide, and 
Polysaccharide + Biochar fractions. 
 Regarding the research question, both Glucose and Glucose + Biochar and Polysaccharide and 
Polysaccharide + Biochar fractions exhibit the same behavior regarding carbon emissions, 
indicating that biochar does not influence this behavior.  

 
Figure 23 Dynamic of Glucose and Polysaccharide composition with or without Biochar. 

 
The graph (Figure 24) allows us to examine daily CO2 concentrations more specifically and 
compare these treatment values for each incubation period. Generally, only fluxes greater than 
control are associated with Days 2 and 5, where we observe glucose CO2 flux first on day 2, 
followed by polysaccharide CO2 flux. With a delay on day 5, CO2 fluxes representing 
Glucose+Biochar, Polysacharide, and Polysacharide+Biochar fractions are placed at the first level 
and Glucose fraction at the second. This behavior mirrors the first study, where the highest daily 
CO2 flux for L2.1 soil on the second day of incubation was observed in Soil+G500 treatment, while 
on the fourth day, Soil+P500 treatment surpassed it. From day 9 onward, all CO2 concentrations 
are lower than the control, and fluxes containing polysaccharides typically have slightly higher 
numbers. The results of the Wilcoxon test (Table 10) were used to compare the CO2 concentrations 
between treatments in each incubation period to determine if there was a significant difference.  
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Figure 24 CO2 concentration (μg g-1 soil) across incubation days and fractions.  This ordering is based on 
statistical analysis; fractions with the same order number don't show significant differences. Level 1 shows the 
highest, and 4 shows the lowest level regarding the CO2 concentration. fractionss. fractions: BC=Biochar; Glucose+ 
BC= Glucose+ Biochar; Polysac= Polysacharide; Polysac+BC= Polysacharide+ Biochar. 
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Table 10 Results of the Wilcoxon test comparing the CO2 concentrations of all treatments against each other for 
each incubation day. fractionss. fractions: BC=Biochar; Glucose+ BC= Glucose+ Biochar; Polysac= 

Polysacharide; Polysac+BC= Polysacharide+ Biochar. 

 

The cumulative CO2 values in Figure 26 show that glucose fractions with and without 
biochar (109.58, 106.78 µg g-1soil) exhibit the most significant values. This indicates that 
glucose in the soil leads to the most considerable CO2 fluxes, and biochar does not influence 
the behavior of glucose and polysaccharides, or more precisely, root exudates in the soil. 
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Figure 25 Cumulative glucose and polysaccharide composition with or without biochar. 

 

3-2-1-2 Implication for Carbon emissions in root exudates treatment 
 
The results from the two sections, 3-1-1 (Glucose and xyloglucan stability) and 3-2-1 (CO₂ 
emissions in root exudate treatments), show a significant difference in CO₂ emissions between 
glucose and xyloglucan fractions. Expressly, in terms of cumulative emissions, glucose fractions 
consistently release higher amounts of CO₂ and carbon compared to the same concentrations of 
xyloglucan, regardless of the presence of biochar. Research on soil carbon cycling and its possible 
effects on agricultural practices depends on a knowledge of the various mechanisms that may 
account for this variance in carbon emissions. 

3-2-1-2-1 Differences in carbon bioavailability and microbial degradation 
 
Glucose, a simple monosaccharide, is highly bioavailable to soil microorganisms (Gunina & 
Kuzyakov, 2015; Nguyen & Guckert, 2001). It provides an immediate and readily accessible 
carbon source, allowing microbes to rapidly metabolize it through aerobic respiration, leading to a 
substantial and quick release of CO₂  (Fierer et al., 2007; Sinsabaugh et al., 2013 ). On the other 
hand, xyloglucan, a polysaccharide, is a more complex organic compound that needs microbial 
enzymatic processing before it can be fully utilized (Shimada et al., 2024; Vieira et al., 2021). The 
slower breakdown of xyloglucan may lead to lower CO₂ emissions than glucose, as soil microbes 
metabolize it more slowly (Saha et al., 2023). The slower breakdown of xyloglucan by soil 
microbes (Saha et al., 2023) may result in lower CO₂ emissions than simpler carbohydrates like 
glucose. Although A study that directly compares the breakdown rates of xyloglucan and glucose 
was not found, Rui & Anderson (2016) noted that xyloglucan's role in cell wall structure and 
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stomatal function implies its breakdown is regulated within broader plant physiological processes, 
potentially leading to a more controlled release of CO₂. Research by ikbel benalaya et al. (2024) 
indicates that polysaccharides with a more complex structure have a slower degradation rate and 
CO₂ emissions than monosaccharides, which often experience a sudden spike.  

3-2-1-2-2 Biochar’s Role in CO₂ Emissions 
 
The presence of biochar in both glucose and xyloglucan fractions did not significantly alter the 
overall pattern of CO₂ emissions, as evidenced by the similar emissions observed in both Glucose 
+ Biochar and Polysaccharide + biochar fractions. Biochar affects soil microbial communities by 
providing additional surface area for microbial colonization, improving soil structure, and 
enhancing nutrient and water retention (Du et al., 2016; Luo, Zang, et al., 2017). However, in this 
study, biochar did not significantly influence CO₂ emissions from glucose or xyloglucan. This 
suggests that while biochar might alter soil physical properties, its effect on microbial carbon 
turnover and CO₂ emissions may be less significant in the presence of more readily available carbon 
sources like glucose (Luo et al., 2011; Whitman et al., 2014). Furthermore, it's possible that the 
experiment's very brief incubation time was insufficient for biochar to have any discernible impact 
on carbon cycling and microbial dynamics (Wang et al., 2015). Additionally, it might take some 
time for microorganisms to adjust to the presence of biochar and create plans for using it as a 
substrate. Lehmann et al. (2011) observed that the microbial colonization of biochar particles and 
the formation of biochar-associated microbial communities is a gradual process. 

3-2-1 Root exudate fractions and SOC priming effect 
 
Figure 27 illustrates the SOC priming effect across various fractions during incubation. The x-axis 
indicates the days of incubation (from 0 to 35), while the y-axis displays the priming effect on SOC 
in µg C g⁻¹ soil. The Glucose fraction shows a notable peak in priming effect on day 1 or 2 (just 
after the incubation begins), followed by a sharp decline as the incubation progresses. The glucose 
+ Biochar fraction reflects a similar trend to glucose alone, but the magnitude of the priming effect 
is generally lower. The polysaccharide fractions (Polysaccharide and Polysaccharide+ Biochar) 
demonstrate a much smaller priming effect than glucose, with a relatively steady and low priming 
effect observed throughout the incubation period. As expected, biochar alone shows little to no 
priming effect on SOC because biochar typically influences long-term soil characteristics and 
microbial colonization rather than causing immediate priming effects. 
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Figure 26 Soil organic carbon priming effect across different fractions. 

 
 
Figure 27 enables a close examination of each incubation period. These graphs also present the 
pairwise Wilcoxon rank-sum test results, which were used to establish the order of significance for 
their PE values. Fractions indicated with the same number do not show a significant difference.  
As observed in the first week of incubation, PE values are more significant. Interestingly, the 
Glucose + Biochar fraction has the highest PE value in almost all incubation periods. On days 4-6, 
the polysaccharide fractions (Polysaccharide and Polysaccharide+ Biochar) have the dominant PE 
value. From day 6 onward, the Polysaccharide + Biochar and Glucose+ Biochar fractions show the 
most significant PE values. From day 23, the Glucose treatment takes the lead for PE value; from 
this day forward, nearly all other treatments exhibit negative PE values. The results of the Wilcoxon 
test (Table 11) were used to compare the significance of CO2 concentrations between fractions in 
each incubation interval. 
Examining cumulative PE values (Figure 28), the Glucose+ Biochar fractions, with a value of 65.68 
(μg g⁻¹ soil), exhibit nearly double the PE compared to Polysacharide+ Biochar (28.05 μg g⁻¹ soil) 
and Polysacharide (25.17 μg g⁻¹ soil), which have close values for second and third place, 
respectively. The PE values for the Glucose fraction remain consistently low across incubation 
periods, while the Biochar fraction, except for the first week, indicates negative PE.  
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Figure 27 Priming Effect on SOC (μg g-1 soil) across incubation intervals and fractionss. fractions: BC=Biochar; 

Glucose+ BC= Glucose+ Biochar; Polysac= Polysacharide; Polysac+BC= Polysacharide+ Biochar. 
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Table 11 Results of the Wilcoxon test comparing the priming effect on SOC across all fractions. 
fractionss. fractions: BC=Biochar; Glucose+ BC= Glucose+ Biochar; Polysac= Polysacharide; Polysac+BC= 

Polysacharide+ Biochar. 
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Figure 28 Cumulative Priming Effect of Soil Organic Carbon Across Different Treatments. 

3-2-1-1 Implication for root exudate treatments and SOC priming effect: 

The observed priming effect (PE) values throughout the incubation period reveal intriguing 
patterns, particularly the dominance of the Glucose + Biochar fraction in most of the incubation 
stages and the subsequent behavior of other fractions, such as Polysaccharide and Polysaccharide 
+ Biochar. These patterns suggest the inherent characteristics of the carbon sources (Glucose vs. 
Polysaccharides) and the influence of biochar amendments. 

3-2-1-1-1 The Glucose + Biochar fraction 
 
The Glucose + Biochar fraction exhibits the highest PE values during the first week, particularly 
on days 1-3. This rapid increase in PE can be attributed to the highly labile nature of glucose, which 
is quickly metabolized by soil microbes, leading to a burst of CO₂ emissions (Gunina & Kuzyakov, 
2015). Biochar likely enhances this effect by providing a stable environment for microbial 
communities, supporting their growth, and improving soil aeration and nutrient availability (Jeffery 
et al., 2011). The increased microbial activity induced by glucose and biochar’s beneficial 
properties may facilitate enhanced breakdown of native SOC, leading to higher PE values in the 
early incubation period (Lehmann et al., 2011). 
The synergistic effect of glucose and biochar is consistent with previous studies showing that 
biochar can stimulate microbial activity and improve the efficiency of carbon cycling (Kuzyakov, 
2010). Biochar acts as a substrate for microbial colonization, amplifying the priming effect by 
enhancing glucose degradation and indirectly supporting microbial processes that involve the 
degradation of more recalcitrant SOC (Lehmann et al., 2011). It is worth noting that biochar can 
contribute to reduced SOC mineralization over longer incubation periods because of depletion of 
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labile SOC from initial positive priming and/or stabilization of SOC through biochar-induced 
organo-mineral interactions (Singh & Cowie, 2014). 
 

3-2-1-1-2 Polysaccharide treatments leading in days 4-6 
 

From days 4 to 6, polysaccharide fraction emerged as having the dominant PE value. Unlike 
glucose, as a rapidly available carbon source, xyloglucan (polysaccharide) is more complex and 
requires a more prolonged microbial effort to degrade (Scheller & Ulvskov, 2010). The higher 
priming effect observed with Polysaccharide AND Polysaccharide+ Biochar fraction during these 
days may indicate that microbes gradually adapt to the polysaccharide, utilizing it more efficiently 
over time (Luo et al., 2016; Sinsabaugh et al., 2013). Still, once the initial adaptation period is over, 
the microbial degradation of polysaccharides could lead to a more sustained priming effect on SOC 
compared to the rapid spike seen with glucose (Blagodatskaya & Kuzyakov, 2008). 
 
Biochar may have a less pronounced effect on polysaccharide decomposition than glucose, given 
that polysaccharides are more complex and might not interact as efficiently with biochar’s physical 
properties (Ameloot et al., 2013). Biochar's role in promoting microbial activity is typically more 
significant when dealing with easily degradable carbon sources like glucose, which supports 
immediate microbial activity (Lehmann et al., 2011).  

3-2-1-1-3 From days 6-17, sustained priming with glucose + Biochar and Polysaccharide+ 
Biochar fractions 

Starting from day 6 onward, the Polysaccharide + Biochar and Glucose + Biochar fraction show 
the most significant PE values. This shift could be explained by the fact that biochar’s presence in 
these treatments supports the microbial community by providing a stable environment, increasing 
microbial diversity, and enhancing nutrient cycling (Lehmann et al., 2011; Xu et al., 2016; Gul et 
al., 2015 ). In particular, biochar can reduce the reliance of microbial communities on recalcitrant 
forms of carbon, providing a more favorable environment for microbial activity even when glucose 
is no longer readily available (Zhao et al., 2020). The result is a sustained priming effect, with 
continued microbial activity breaking down native SOC and producing CO₂. 

3-2-1-1-4 Glucose Treatment Leading in Day 23 and Beyond 
 
Interestingly, from day 23 onward, the Glucose treatment emerges as the leader in PE values, while 
many other treatments exhibit negative PE values. The behavior of the Glucose treatment can be 
attributed to its initial strong priming effect followed by a steady shift towards the decomposition 
of more recalcitrant SOC, particularly after the labile glucose carbon is exhausted. As microbes 
transition from glucose to more stable SOC, the priming effect can continue at lower levels, leading 
to a relatively consistent CO₂ emission. 
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The negative PE values observed for other treatments after day 23 are intriguing and could be 
explained by the inhibitory effects of biochar and polysaccharides (Gunina & Kuzyakov, 2015). 
Over time, biochar’s role in enhancing microbial activity may diminish, especially in systems 
where microbial communities have adapted, and the available carbon is limited (LUO et al., 2014). 
Similarly, polysaccharides may exert a lower priming effect as they are more complex and less 
readily decomposed, decreasing microbial activity once the initial microbial adaptation phase has 
passed (Kuzyakov et al., 2009). 
 

4- Conclusion and outlook 

4-1 Study1: Impact of Glucose, Xyloglucan, and Biochar 
Amendments on Soil Aggregation and CO₂ Emissions 

4-1-1 CO₂ fluxes and treatment effects 

The CO₂ fluxes and treatment effects section findings indicated that glucose rapidly increased 
CO₂ emissions during the early incubation phases due to its more straightforward structure. This 
quick response is linked to its labile nature, which soil microorganisms metabolize swiftly 
(Gunina & Kuzyakov, 2015; Demoling et al., 2007). The immediate microbial reaction resulted 
in higher daily and cumulative CO₂ fluxes, particularly in L2.1 and REC soils. However, as the 
incubation continued and glucose was depleted, emissions decreased. In contrast, xyloglucan, 
which has a more complex and stable structure, exhibited slower and steadier CO₂ emissions over 
time, supporting the notion that polysaccharides serve as a more lasting carbon source (Gunina & 
Kuzyakov, 2015; Ravachol et al., 2016). 

Statistical analysis using the Wilcoxon test showed that glucose treatments produced significantly 
greater CO₂ emissions than xyloglucan treatments, especially during the first two days of 
incubation. However, as microbial activity declined, the differences between the two treatments 
lessened, suggesting that glucose induces a rapid and transient microbial response compared to 
the more enduring microbial processes facilitated by polysaccharides (Sinsabaugh et al., 2013; 
Blagodatskaya & Kuzyakov, 2008). 

The comparison between glucose and xyloglucan treatments at two concentrations (50 µg and 500 
µg) revealed notable differences in CO₂ emissions and their impact on soil stability. The higher 
glucose concentration (G500) led to significantly higher CO₂ emissions and a more pronounced 
effect on soil stability. This can be explained by glucose's labile nature, which makes it readily 
available to soil microorganisms, enabling rapid microbial metabolism and an immediate increase 
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in CO₂ emissions (Gunina & Kuzyakov, 2015). The higher concentration of glucose likely provided 
an abundance of easily degradable carbon, promoting accelerated microbial activity and a stronger 
impact on soil stability during the early stages of incubation. Conversely, xyloglucan treatments 
(P500) induced more stable and gradual changes in CO₂ fluxes and soil particle size reduction. The 
slower degradation of xyloglucan, due to its more complex structure, likely resulted in a less 
immediate microbial response compared to glucose (Gunina & Kuzyakov, 2015; Saha et al., 2023). 
This slower breakdown process contributed to more stable CO₂ emissions and a more sustained 
effect on soil aggregation and stability. The cumulative CO₂ emissions from glucose were notably 
higher than those from polysaccharide treatments, with glucose outpacing xyloglucan in L2.1 soil. 
This finding further supports the idea that glucose, as a labile carbon source, induces a rapid but 
transient priming effect, while xyloglucan produces a more sustained, gradual effect over time. 
There were small differences between treatments, but the total emissions from glucose in REC soil 
were still high. This suggests that the soil's ability to store and absorb carbon may vary.These 
results highlight the differential effects of glucose and xyloglucan on microbial activity and soil 
stability, with glucose providing immediate but short-lived impacts, whereas xyloglucan offers 
more prolonged benefits for soil health.Soil type played a crucial role in these results. L2.1 soil, 
containing a higher total organic carbon (TOC) content (0.6%), exhibited increased microbial 
activity, contributing to more stable soil aggregation than REC soil, which had a lower TOC 
content (0.3%) and displayed more significant fluctuations in particle size reduction (da Silva et 
al., 2022). This implies that TOC content and soil texture are vital in determining how soils respond 
to amendments. L2.1 soil, with larger particles, exhibited quicker settling during laser diffraction 
analysis, leading to more rapid reductions in median soil size than REC soil, which showed slower 
reductions due to its finer particles. 

4-1-2 The Role of polysaccharides in soil aggregation and Stability 

This section highlights the crucial role of polysaccharides, especially xyloglucan, in improving soil 
aggregation and stability. Adding easily accessible carbon sources like glucose boosts microbial 
activity, affecting aggregates' size and stability over time (Sarker et al., 2022; Li et al., 2020; 
Gunina & Kuzyakov, 2015). While glucose treatments show immediate and elevated CO₂ fluxes, 
indicating short-term effects on soil aggregation, polysaccharides, due to their complex structures, 
produce more enduring changes in soil structure, suggesting long-lasting benefits for soil stability 
(Gunina & Kuzyakov, 2015; Sarker et al., 2022).  

According to study findings, L2.1 soil, which has a higher total organic carbon (TOC) content than 
REC soil, shows more microbial activity and more stable aggregation, highlighting the importance 
of soil texture and physicochemical properties (da Silva et al., 2022). These observations highlight 
how important it is to consider soil characteristics when choosing additives for soil management. 
Future studies should delve into the microbial mechanisms behind these changes and evaluate long-
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term impacts across different soil types, utilizing techniques like Scanning Electron Microscopy 
(SEM) better to assess the effects of amendments on soil aggregation (Amelung et al., 2023). 

4-2 Study 2: The Role of Biochar, Glucose, and Xyloglucan on Soil 
Organic Carbon Priming 

The second study examines how adding glucose, xyloglucan, and biochar affects soil organic 
carbon (SOC) priming, emphasizing how microbial activity and SOC dynamics change with 
different treatments. The findings show that glucose quickly boosts microbial activity and speeds 
up SOC breakdown, while xyloglucan has a slower but more lasting effect. 

4-2-1 CO₂ emissions in root exudate fractions 

The differences in CO₂ emissions between glucose and xyloglucan fractions arise primarily from 
their distinct bioavailability and microbial degradation rates. Glucose, a simple monosaccharide, is 
easily accessible to soil microorganisms, facilitating rapid microbial metabolism and quick CO₂ 
release (Gunina & Kuzyakov, 2015; Nguyen & Guckert, 2001). This results in the high and 
immediate CO₂ emissions observed with glucose treatments, aligning with prior studies 
emphasizing glucose as a labile carbon source promoting rapid microbial respiration (Fierer et al., 
2007; Sinsabaugh et al., 2013). In contrast, the more complex polysaccharide xyloglucan requires 
enzymatic breakdown before soil microbes can completely utilize it (Shimada et al., 2024; Vieira 
et al., 2021). This slower decomposition leads to lower, more stable CO₂ emissions than glucose 
emissions as microbial activity develops gradually (Saha et al., 2023). 

Biochar, recognized for improving soil structure and enhancing microbial colonization (Du et al., 
2016; Luo, Zang, et al., 2017), did not significantly change CO₂ emissions when paired with 
glucose or xyloglucan. Although biochar supports microbial activity and boosts nutrient retention, 
its impact on CO₂ emissions was minimal when readily available carbon like glucose was present. 
This might be explained by the very brief incubation period, which could not have given biochar 
enough time to have a substantial impact on carbon cycling and microbial dynamics (Wang et al., 
2015).  Microorganisms may need additional time to adjust to biochar and utilize it as a substrate 
since the microbial communities associated with biochar typically develop gradually (Lehmann et 
al., 2011). Therefore, biochar’s effect on microbial carbon turnover could be more pronounced over 
longer durations or in systems containing more recalcitrant carbon sources. 

4-2-2 Root exudate fractions and SOC priming effect 

The SOC priming effect (PE) displayed variations across treatments, mainly with glucose and 
xyloglucan fractions. The most pronounced priming effect was seen with the glucose fraction, 
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which peaked early in the incubation period (Figure 27). This swift priming effect arises from 
glucose's labile nature, allowing it to be rapidly metabolized by soil microbes, increasing microbial 
activity and CO₂ emissions (Gunina & Kuzyakov, 2015). When combined with glucose, biochar 
further amplified this priming effect by creating a stable environment for microbial communities, 
thereby supporting their growth and boosting microbial activity (Jeffery et al., 2011; Lehmann et 
al., 2011). 

Conversely, both with and without biochar, xyloglucan treatments exhibited a more gradual and 
sustained priming effect. The polysaccharide fractions showed lower PE values during the early 
incubation stages but gradually increased over time (Blagodatskaya & Kuzyakov, 2008). This 
behavior is attributed to xyloglucan's complex structure, necessitating a more extended adaptation 
period for microbes to degrade efficiently (Scheller & Ulvskov, 2010). The effect of biochar on 
promoting microbial activity was less evident when paired with xyloglucan, indicating that 
biochar's influence is more significant when combined with easily degradable carbon sources like 
glucose (Lehmann et al., 2011; Ameloot et al., 2013). 

As the incubation period advanced, the priming effect evolved. Glucose fractions sustained a 
consistent, yet lower, priming effect after day 23 (Figure 28), likely due to the depletion of labile 
glucose carbon. Subsequently, microbial activity shifted to the degradation of more recalcitrant 
SOC. In contrast, polysaccharide and biochar treatments showed negative PE values after day 23, 
likely reflecting the depletion of readily available carbon sources and a change in microbial 
dynamics. These findings suggest glucose induces a rapid priming effect that is more transient 
compared to the slower yet prolonged effects of polysaccharides, particularly in the presence of 
biochar (Gunina & Kuzyakov, 2015). 

The implications of this research are vital for agricultural practices. Glucose amendments increase 
microbial activity and SOC degradation, which is beneficial for short-term soil management 
strategies. However, for long-term stability and carbon sequestration, polysaccharide-based 
amendments like xyloglucan may offer more lasting benefits by promoting gradual microbial 
activity and SOC stabilization. Combining biochar with glucose or xyloglucan may boost microbial 
activity and carbon cycling, although its effects are more pronounced in systems with recalcitrant  

The long-term effects of biochar and polysaccharide additions on soil health under varied 
environmental circumstances and soil types could be investigated in future studies. More research, 
including extended incubation times and microbial community investigations, might help 
determine how biochar affects microbial adaptability and soil carbon shifts.  
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