001053904 001__ 1053904
001053904 005__ 20260201105311.0
001053904 0247_ $$2doi$$a10.1093/neuonc/noaf201.1140
001053904 0247_ $$2ISSN$$a1522-8517
001053904 0247_ $$2ISSN$$a1523-5866
001053904 037__ $$aFZJ-2026-01602
001053904 082__ $$a610
001053904 1001_ $$0P:(DE-HGF)0$$aPeplinski, Jana-Marie$$b0
001053904 1112_ $$a7th Quadrennial Meeting of the World Federation of Neuro-Oncology Societies$$cHonolulu$$d2025-11-20 - 2025-11-23$$gSNO / WFNOS 2025$$wUSA
001053904 245__ $$aIMG-61. Assessment of18F-FET PET-based response to bevacizumab-based regimens in patients with glioblastoma at relapse using the PET RANO 1.0 criteria
001053904 260__ $$c2025
001053904 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1769939567_17710
001053904 3367_ $$033$$2EndNote$$aConference Paper
001053904 3367_ $$2BibTeX$$aINPROCEEDINGS
001053904 3367_ $$2DRIVER$$aconferenceObject
001053904 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001053904 3367_ $$2ORCID$$aOTHER
001053904 520__ $$aAbstractBACKGROUNDWe evaluated the amino acid PET-based response assessment criteria (PET RANO 1.0) for their ability to predict longer overall survival (OS) in patients with glioblastoma treated with bevacizumab-based regimens at relapse.PATIENTS AND METHODSThirty-eight adult patients with IDH-wildtype glioblastoma were identified from three previously published studies. All patients (i) received bevacizumab in combination with a second agent (irinotecan, lomustine, or nivolumab), (ii) underwent MRI- and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET imaging at baseline and at a median time of 8 weeks (range, 4-12 weeks) after treatment initiation, and (iii) had available PET-derived parameters, i.e., metabolic tumor volume (MTV), maximum and mean tumor-to-brain ratios (TBRmax and TBRmean). A post-hoc analysis was performed to evaluate the predictive value of the PET RANO 1.0 criteria. In addition, ROC analyses were performed to define PET parameter thresholds for predicting an OS≥9 months. Furthermore, response prediction using the RANO 2.0 criteria for MRI was compared with the PET RANO 1.0 criteria.RESULTSAccording to the PET RANO 1.0 criteria, patients fulfilling the criterion Stable Disease (n=10), Partial Response (n=19), or Complete Response (n=1) had a significantly longer OS than patients with Progressive Disease (n=8) (9.0 vs. 4.0 months; P=0.001). Among the suggested thresholds by the PET RANO 1.0 criteria, only a MTV reduction ≥40% was significantly predictive of response (7.3 vs. 4.0 months; P=0.008). Optimal thresholds identified by ROC analysis differed from those proposed by the PET RANO 1.0 criteria. A reduction in MTV by ≥30% and in TBRmean by ≥4% were both predictive of longer OS (7.3 vs. 4.0 months; P=0.008, and 10.6 vs. 6.0 months; P=0.010, respectively). The RANO 2.0 criteria were less significant to predict a longer OS (9.0 vs. 6.0 months; P=0.015).CONCLUSIONPET RANO 1.0 criteria appear to be effective in predicting response to bevacizumab-based therapy in glioblastomas at relapse.
001053904 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001053904 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053904 7001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b1
001053904 7001_ $$0P:(DE-HGF)0$$aCeccon, Garry$$b2
001053904 7001_ $$0P:(DE-Juel1)190394$$aWollring, Michael$$b3
001053904 7001_ $$0P:(DE-HGF)0$$aStetter, Isabelle$$b4
001053904 7001_ $$0P:(DE-HGF)0$$aRosen, Jurij$$b5
001053904 7001_ $$0P:(DE-HGF)0$$aRosen, Elena$$b6
001053904 7001_ $$0P:(DE-Juel1)208037$$aKraft, Manuel$$b7$$ufzj
001053904 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon$$b8$$ufzj
001053904 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b9$$ufzj
001053904 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b10$$ufzj
001053904 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b11$$ufzj
001053904 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noaf201.1140$$gVol. 27, no. Supplement_5, p. v287 - v287$$x1523-5866$$y2025
001053904 8564_ $$uhttps://academic.oup.com/neuro-oncology/article/27/Supplement_5/v287/8319142
001053904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)208037$$aForschungszentrum Jülich$$b7$$kFZJ
001053904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b8$$kFZJ
001053904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b9$$kFZJ
001053904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b10$$kFZJ
001053904 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b11$$kFZJ
001053904 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001053904 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001053904 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2022$$d2024-12-11
001053904 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001053904 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001053904 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001053904 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001053904 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-11
001053904 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001053904 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001053904 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURO-ONCOLOGY : 2022$$d2024-12-11
001053904 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
001053904 980__ $$aabstract
001053904 980__ $$aVDB
001053904 980__ $$aI:(DE-Juel1)INM-4-20090406
001053904 980__ $$aUNRESTRICTED