001     1053908
005     20260201102145.0
024 7 _ |a 10.1093/neuonc/noaf201.1155
|2 doi
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
037 _ _ |a FZJ-2026-01606
082 _ _ |a 610
100 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 0
|u fzj
111 2 _ |a 7th Quadrennial Meeting of the World Federation of Neuro-Oncology Societies
|g SNO / WFNOS 2025
|c Honolulu
|d 2025-11-20 - 2025-11-23
|w USA
245 _ _ |a IMG-76. FET PET reveals considerable volumetric and spatial differences in tumor burden compared to conventional MRI in recurrent glioblastoma
260 _ _ |c 2025
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1769937678_17679
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a AbstractBACKGROUNDIn recurrent glioblastomas, changes in areas of contrast enhancement and the T2/fluid-attenuated inversion recovery (FLAIR) signal on conventional MRI represent the mainstay for local therapy planning. Nevertheless, compared to conventional MRI, the information on the tumor burden obtained from amino acid PET may be considerably different in terms of volumetric assessment and spatial orientation.METHODSAt suspected recurrence, 56 patients with histomolecularly characterized glioblastoma underwent O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET and MR imaging including contrast-enhanced and FLAIR sequences. Contrast-enhancing and FLAIR volumes were automatically segmented using HD-GLIO, and FET PET tumor volumes were assessed using the nnUNet-based JuST_BrainPET segmentation tool based on a tumor-to-brain ratio of ≥1.6. All segmentations were visually checked. Subsequently, an in-house developed workflow was used for a fully automated assessment of maximum and mean tumor-to-brain ratios. To evaluate spatial differences between the modalities, percentage overlap, the Dice similarity coefficient (DSC), and the 95th-percentile Hausdorff distance (HD95) were calculated. Recurrent disease was confirmed either by neuropathological evaluation of tissue obtained from surgery or stereotactic biopsy or prompted a change in treatment.RESULTSAll patients had measurable disease according to the PET RANO 1.0 criteria (mean tumor-to-brain ratio, 2.2±0.2). In 52 patients (93%), the FET PET tumor volume was significantly larger than the contrast-enhancing volume (36.5±31.6 mL vs. 18.5±19.7 mL; P<0.001). On average, FET PET tumor volumes extended by 30% beyond the combined contrast-enhancing and FLAIR volumes. The spatial similarity between FET uptake and contrast enhancement was limited (mean DSC, 0.40±0.23), with an HD95 of 17.8±12.2 mm. The comparison of FET uptake with the FLAIR hyperintensity revealed even lower spatial similarity (mean DSC, 0.35±0.16), and a higher boundary discrepancy (HD95, 30.0±14.2 mm).CONCLUSIONSOur results strongly support integrating both imaging modalities into treatment planning of patients with glioblastoma at recurrence.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hilgers, Julia
|0 P:(DE-Juel1)203564
|b 1
|u fzj
700 1 _ |a Ciantar, Keith
|0 P:(DE-Juel1)203314
|b 2
|u fzj
700 1 _ |a Kraft, Manuel
|0 P:(DE-Juel1)208037
|b 3
|u fzj
700 1 _ |a Peplinski, Jana-Marie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Werner, Jan-Michael
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wollring, Michael
|0 P:(DE-Juel1)190394
|b 6
700 1 _ |a Stetter, Isabelle
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ceccon, Garry
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Fink, Gereon
|0 P:(DE-Juel1)131720
|b 9
|u fzj
700 1 _ |a Goldbrunner, Roland
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ruge, Maximilian
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Shah, Nadim
|0 P:(DE-Juel1)131794
|b 12
|u fzj
700 1 _ |a Mottaghy, Felix
|0 P:(DE-Juel1)132318
|b 13
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 14
|u fzj
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 15
|u fzj
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 16
|u fzj
773 _ _ |a 10.1093/neuonc/noaf201.1155
|0 PERI:(DE-600)2094060-9
|y 2025
|g Vol. 27, no. Supplement_5, p. v291 - v291
|x 1523-5866
856 4 _ |u https://academic.oup.com/neuro-oncology/article/27/Supplement_5/v291/8319239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)203564
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)203314
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)208037
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)132318
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)145110
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NEURO-ONCOLOGY : 2022
|d 2024-12-11
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21