001053911 001__ 1053911
001053911 005__ 20260201105338.0
001053911 0247_ $$2doi$$a10.1093/neuonc/noaf201.1167
001053911 0247_ $$2ISSN$$a1522-8517
001053911 0247_ $$2ISSN$$a1523-5866
001053911 037__ $$aFZJ-2026-01609
001053911 082__ $$a610
001053911 1001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b0
001053911 1112_ $$a7th Quadrennial Meeting of the World Federation of Neuro-Oncology Societies$$cHonolulu$$d2025-11-20 - 2025-11-23$$wUSA
001053911 245__ $$aIMG-88. Prognostic relevance of preoperative FET PET in patients with newly diagnosed glioblastoma
001053911 260__ $$c2025
001053911 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1769939597_17781
001053911 3367_ $$033$$2EndNote$$aConference Paper
001053911 3367_ $$2BibTeX$$aINPROCEEDINGS
001053911 3367_ $$2DRIVER$$aconferenceObject
001053911 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001053911 3367_ $$2ORCID$$aOTHER
001053911 520__ $$aAbstractBACKGROUNDThe present study investigated the prognostic relevance of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET parameters in newly diagnosed IDH-wildtype glioblastoma.METHODSFifty patients with newly diagnosed and histomolecularly characterized glioblastoma according to the WHO 2021 classification who had undergone FET PET imaging prior to diagnostic biopsy or surgery and subsequent postoperative radiotherapy with concomitant and adjuvant temozolomide (n=36) or temozolomide plus lomustine (n=14) were retrospectively analyzed. The nnUNet-based JuST_BrainPET tool was used for segmentation of the FET PET tumor volume based on a tumor-to-brain ratio (TBR) of ≥1.6. All segmentations were visually checked. Quantitative PET parameters, i.e., maximum and mean TBR values, and metabolic tumor volumes (MTV), were correlated with overall survival (OS) using Cox regression models. Additional clinical parameters included age (range, 26-82 years), MGMT promoter methylation status (methylated in 58% of patients), RANO resection class (range, 2-4), treatment regimen, and postoperative Karnofsky Performance Status (range, 60-100%) and NANO score (range, 0-7 points),RESULTSIn univariate Cox regression, preoperative MTV (hazard ratio [HR], 1.10; 95% CI, 1.04-1.17; p=0.002) and unmethylated MGMT promoter (HR, 2.82; 95% CI, 1.22-6.70; p=0.016) were the only parameters significantly associated with shorter OS. In multivariate analysis, MTV remained prognostic (p=0.003), as well as MGMT promoter methylation status (p=0.031). Model comparison using Akaike’s Information Criterion favored MTV over MGMT promoter methylation as the better overall prognostic fit.CONCLUSIONThese data support the integration of the FET PET tumor volume as prognostic biomarker in glioblastoma risk stratification. Further studies with larger datasets are needed to substantiate our findings.Topic: positron-emission tomography biopsy glioblastoma immunologic adjuvants pharmaceutical adjuvants foreign medical graduates karnofsky performance status lomustine methylation o(6)-methylguanine-dna methyltransferase preoperative care surgical procedures, operative world health organization brain diagnosis neoplasms patient prognosis surgery specialty tyrosine temozolomide prognostic marker postoperative radiotherapy stratification cox proportional hazards models tumor volume datasets
001053911 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001053911 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053911 7001_ $$0P:(DE-HGF)0$$aMüller, Katharina J$$b1
001053911 7001_ $$0P:(DE-HGF)0$$aMair, Maximilian J$$b2
001053911 7001_ $$aPeplinski, Jana-Marie$$b3
001053911 7001_ $$0P:(DE-Juel1)208037$$aKraft, Manuel$$b4$$ufzj
001053911 7001_ $$0P:(DE-Juel1)203564$$aHilgers, Julia$$b5$$ufzj
001053911 7001_ $$0P:(DE-Juel1)203314$$aCiantar, Keith G$$b6$$ufzj
001053911 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b7$$ufzj
001053911 7001_ $$0P:(DE-HGF)0$$aGoldbrunner, Roland$$b8
001053911 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J$$b9$$ufzj
001053911 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M$$b10$$ufzj
001053911 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b11$$ufzj
001053911 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b12$$ufzj
001053911 7001_ $$0P:(DE-HGF)0$$aPreusser, Matthias$$b13
001053911 7001_ $$0P:(DE-HGF)0$$aAlbert, Nathalie L$$b14
001053911 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b15$$ufzj
001053911 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noaf201.1167$$gVol. 27, no. Supplement_5, p. v294 - v295$$x1523-5866$$y2025
001053911 8564_ $$uhttps://academic.oup.com/neuro-oncology/article/27/Supplement_5/v294/8319479
001053911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)208037$$aForschungszentrum Jülich$$b4$$kFZJ
001053911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203564$$aForschungszentrum Jülich$$b5$$kFZJ
001053911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203314$$aForschungszentrum Jülich$$b6$$kFZJ
001053911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b7$$kFZJ
001053911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b9$$kFZJ
001053911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b10$$kFZJ
001053911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b11$$kFZJ
001053911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b12$$kFZJ
001053911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b15$$kFZJ
001053911 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001053911 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-11$$wger
001053911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2022$$d2024-12-11
001053911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001053911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001053911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001053911 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
001053911 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-11
001053911 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
001053911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001053911 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURO-ONCOLOGY : 2022$$d2024-12-11
001053911 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
001053911 980__ $$aabstract
001053911 980__ $$aVDB
001053911 980__ $$aI:(DE-Juel1)INM-4-20090406
001053911 980__ $$aUNRESTRICTED