001     1053929
005     20260201202253.0
024 7 _ |a 10.34734/FZJ-2026-01614
|2 datacite_doi
037 _ _ |a FZJ-2026-01614
041 _ _ |a English
100 1 _ |a Wasmer, Johannes
|0 P:(DE-Juel1)186072
|b 0
|e Corresponding author
|u fzj
111 2 _ |a FZJ IAS Retreat 2025
|c Jülich
|d 2025-05-27 - 2025-05-27
|w Germany
245 _ _ |a Towards all-electron treatment in electronic structure machine learning
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1769940308_17781
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen
520 _ _ |a Electronic structure calculations with density functional theory (DFT) are today the most widely used technique for computational materials design. As materials design enters the artificial intelligence (AI) age, large databases of these calculations, such as the Materials Project, form the basis for creating foundation models. This can be seen in leaderboards such as Matbench Discovery [1]. These AI foundation models mark a paradigm shift in computational materials design since they accelerate the time to solution by orders of magnitude. However, the current DFT databases and AI surrogate models are not accurate enough to design quantum materials. This problem can be solved by employing all-electron, full-potential, fully relativistic DFT, that can reach the required calculation precision. The JuDFT.de codes are among the few established implementations of such methods [2]. They are the only all-electron DFT codes supporting high-throughput data generation that implement the FAIR data guidelines via their plugin integration with the AiiDA.net workflow engine.We present our progress on the open problem of surrogate AI models for all-electron DFT data for the JuDFT codes. We focus on the JuKKR code, and materials systems with defects, such as magnetically doped topological insulators [3]. We predict the converged electron potential for accelerated DFT, and first-principles exchange interactions for accelerated spin dynamics.[1] Riebesell, J. et al. Matbench Discovery – A framework to evaluate machine learning crystal stability predictions. Preprint at https://doi.org/10.48550/arXiv.2308.14920 (2024).[2] Bosoni, E. et al. How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nat Rev Phys 6, 45–58 (2024).[3] Mozumder, R., Wasmer, J., Antognini Silva, D., Blügel, S. & Rüßmann, P. High-throughput magnetic co-doping and design of exchange interactions in topological insulators. Phys. Rev. Mater. 8, 104201 (2024).
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 1
536 _ _ |a AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731)
|0 G:(DE-Juel-1)aidas_20200731
|c aidas_20200731
|x 2
536 _ _ |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 3
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 1
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Rüssmann, Philipp
|0 P:(DE-Juel1)157882
|b 1
|e Collaboration author
|u fzj
700 1 _ |a Sanvito, Stefano
|0 P:(DE-HGF)0
|b 2
|e Collaboration author
700 1 _ |a Cangi, Attila
|0 P:(DE-HGF)0
|b 3
|e Collaboration author
700 1 _ |a Assent, Ira
|0 P:(DE-Juel1)188313
|b 4
|e Collaboration author
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 5
|e Thesis advisor
|u fzj
856 4 _ |u https://iffgit.fz-juelich.de/phd-project-wasmer/presentations/2025-05-27-poster-ias-retreat
856 4 _ |u https://juser.fz-juelich.de/record/1053929/files/poster.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1053929
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186072
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157882
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)188313
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21