001053955 001__ 1053955
001053955 005__ 20260202125357.0
001053955 0247_ $$2doi$$a10.1103/cd62-5hq8
001053955 0247_ $$2datacite_doi$$a10.34734/FZJ-2026-01632
001053955 037__ $$aFZJ-2026-01632
001053955 082__ $$a530
001053955 1001_ $$0P:(DE-HGF)0$$aSteiner, Corinne$$b0
001053955 245__ $$aCurrent-induced brightening of vacancy-related emitters in hexagonal boron nitride
001053955 260__ $$aCollege Park, MD$$bAPS$$c2025
001053955 3367_ $$2DRIVER$$aarticle
001053955 3367_ $$2DataCite$$aOutput Types/Journal article
001053955 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770028891_4951
001053955 3367_ $$2BibTeX$$aARTICLE
001053955 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001053955 3367_ $$00$$2EndNote$$aJournal Article
001053955 520__ $$aWe perform photoluminescence measurements on vacancy-related emitters in hexagonal boron nitride (hBN) that are notorious for their low quantum yields. The gating of these emitters via few-layer graphene electrodes reveals a reproducible, gate-dependent brightening of the emitter, which coincides with a change in the direction of the simultaneously measured leakage current across the hBN layers. At the same time, we observe that the relative increase of the brightening effect scales linearly with the intensity of the excitation laser. Both observations can be explained in terms of a photo-assisted electroluminescence effect. Interestingly, emitters can also show the opposite behavior, i.e., a decrease in emitter intensity that depends on the gate leakage current. We explain these two opposing behaviors by different concentrations of donor and acceptor states in the hBN and show that precise control of the doping of hBN is necessary to gain control over the brightness of vacancy-related emitters by electrical means. Our findings contribute to a deeper understanding of vacancy-related defect emitters in hBN that is necessary to make use of their potential in quantum information processing.
001053955 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001053955 536__ $$0G:(GEPRIS)390534769$$aDFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x1
001053955 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001053955 7001_ $$0P:(DE-HGF)0$$aRahmel, Rebecca$$b1
001053955 7001_ $$0P:(DE-HGF)0$$aVolmer, Frank$$b2
001053955 7001_ $$0P:(DE-HGF)0$$aWindisch, Rika$$b3
001053955 7001_ $$0P:(DE-HGF)0$$aJanssen, Lars H.$$b4
001053955 7001_ $$0P:(DE-HGF)0$$aPesch, Patricia$$b5
001053955 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b6
001053955 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b7
001053955 7001_ $$0P:(DE-HGF)0$$aLibisch, Florian$$b8
001053955 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b9
001053955 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b10
001053955 7001_ $$0P:(DE-HGF)0$$aKurzmann, Annika$$b11$$eCorresponding author
001053955 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/cd62-5hq8$$gVol. 7, no. 3, p. L032037$$n3$$pL032037$$tPhysical review research$$v7$$x2643-1564$$y2025
001053955 8564_ $$uhttps://juser.fz-juelich.de/record/1053955/files/cd62-5hq8.pdf$$yOpenAccess
001053955 909CO $$ooai:juser.fz-juelich.de:1053955$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001053955 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001053955 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001053955 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
001053955 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
001053955 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
001053955 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
001053955 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)178028$$aRWTH Aachen$$b9$$kRWTH
001053955 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b10$$kFZJ
001053955 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b11$$kRWTH
001053955 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001053955 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-11-05
001053955 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001053955 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-11-05
001053955 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2025-11-05
001053955 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-02-07T08:08:02Z
001053955 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-02-07T08:08:02Z
001053955 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-11-05
001053955 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-11-05
001053955 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-11-05
001053955 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001053955 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-02-07T08:08:02Z
001053955 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-11-05
001053955 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-11-05
001053955 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-11-05
001053955 920__ $$lyes
001053955 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001053955 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001053955 980__ $$ajournal
001053955 980__ $$aVDB
001053955 980__ $$aUNRESTRICTED
001053955 980__ $$aI:(DE-Juel1)PGI-9-20110106
001053955 980__ $$aI:(DE-82)080009_20140620
001053955 9801_ $$aFullTexts