001053971 001__ 1053971
001053971 005__ 20260203082441.0
001053971 037__ $$aFZJ-2026-01647
001053971 1001_ $$0P:(DE-Juel1)194673$$aOmoyele, Olalekan$$b0$$eCorresponding author$$ufzj
001053971 1112_ $$a'Association of European Operational Research Societies (EURO)$$cLeeds$$d2025-06-22 - 2025-06-25$$wUnited Kingdom
001053971 245__ $$aA High-Resolution Downscaling Approach for Solar Irradiance Using Statistical Parameter Matching
001053971 260__ $$c2025
001053971 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1770103459_30799
001053971 3367_ $$033$$2EndNote$$aConference Paper
001053971 3367_ $$2BibTeX$$aINPROCEEDINGS
001053971 3367_ $$2DRIVER$$aconferenceObject
001053971 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001053971 3367_ $$2ORCID$$aOTHER
001053971 520__ $$aThe limited intra-hour variability of globally available hourly renewable energy system data leads to inaccuracies in the modeling of renewable energy systems. This work, therefore, presents a methodology to increase the temporal resolution of the global horizontal irradiance from one hour to one minute using non-dimensional irradiance and parameters matching for arbitrary locations. The methodology is validated using statistical methods and energy system modeling in self-sufficient buildings. The hourly annual normalized root mean square error and Kolmogorov-Smirnov Integral range from 6 - 12% and 0.1 - 0.84, respectively, for different locations consisting of varying weather conditions. The energy system optimization results of the synthetic data demonstrate superiority in terms of cost and feasibility relative to the average hourly resolution data. The use of synthetic minute resolution data has been shown to significantly improve the design accuracy of dynamic components such as inverters (where underestimation in capacity is up to 58%) and storage systems. The developed methodology facilitates more reliable energy system modeling.
001053971 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
001053971 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
001053971 7001_ $$0P:(DE-Juel1)176842$$aHoffmann, Maximilian$$b1$$ufzj
001053971 7001_ $$0P:(DE-Juel1)190787$$aWeinand, Jann$$b2$$ufzj
001053971 7001_ $$0P:(DE-HGF)0$$aLarraneta, M.$$b3
001053971 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4$$ufzj
001053971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194673$$aForschungszentrum Jülich$$b0$$kFZJ
001053971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176842$$aForschungszentrum Jülich$$b1$$kFZJ
001053971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190787$$aForschungszentrum Jülich$$b2$$kFZJ
001053971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
001053971 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
001053971 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
001053971 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
001053971 920__ $$lyes
001053971 9201_ $$0I:(DE-Juel1)ICE-2-20101013$$kICE-2$$lJülicher Systemanalyse$$x0
001053971 980__ $$aabstract
001053971 980__ $$aVDB
001053971 980__ $$aI:(DE-Juel1)ICE-2-20101013
001053971 980__ $$aUNRESTRICTED