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Experimentally informed decoding of stabilizer codes based on syndrome correlations
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High-fidelity decoding of quantum error correction codes relies on an accurate experimental model of the
physical errors occurring in the device. Because error probabilities can depend on the context of the applied
operations, the error model is ideally calibrated using the same circuit as is used for the error correction
experiment. Here, we present an experimental approach guided by an analytical formula to characterize the
probability of independent errors using correlations in the syndrome data generated by executing the error
correction circuit. Using the method on a distance-three surface code, we analyze error channels that flip an
arbitrary number of syndrome elements, including Pauli ¥ errors, hook errors, multiqubit errors, and leakage, in
addition to standard Pauli X and Z errors. We use the method to find the optimal weights for a minimum-weight
perfect matching decoder without relying on a theoretical error model. Additionally, we investigate whether
improved knowledge of the Pauli ¥ error channel, based on correlating the X- and Z-type error syndromes, can
be exploited to enhance matching decoding. Furthermore, we find correlated errors that flip many syndrome
elements over up to eight cycles, potentially caused by leakage of the data qubits out of the computational
subspace. The presented method provides the tools for accurately calibrating a broad family of decoders, beyond

the minimum-weight perfect matching decoder, without relying on prior knowledge of the error model.

DOI: 10.1103/z1ng-wg3k

I. INTRODUCTION

Recent performance advances in quantum computing with
superconducting qubits [1-6] have enabled experimental
demonstrations of complex quantum computations [7-9].
State-of-the-art devices, however, still lack the performance
to solve real-world problems [10]. Quantum error correction
(QEC) promises to exponentially reduce the effective logical
error rate at the cost of a polynomial increase in the number
of qubits [11-13], as recently demonstrated experimen-
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tally [6,14,15]. A widely pursued route to achieve this error
suppression is the use of stabilizer codes [16], which rely on
repeated measurements of a set of mutually commuting stabi-
lizer operators. Physical errors are accompanied by changes in
the stabilizer values, called the syndrome. The change of logi-
cal operator values can be decoded from the syndromes. While
a main challenge in implementing quantum error-corrected
circuits remains the realization of large-scale devices with
low physical error rates, a topic of rising relevance is the
fast and accurate decoding of error syndromes extracted from
large circuits [17]. Decoders for experimental quantum error
correction data have so far been calibrated by numerically
optimizing for maximal logical fidelity [18,19], analyzing
the correlations between syndrome elements [3,4,9], or nu-
merically optimizing to match the higher-order correlations
between syndrome elements [20-22]. The most performant
decoders often rely on either an accurate error model of
the device or a large dataset of training data in the case of
machine-learning-based decoders.

In this work, we focus on developing an accurate error
model by analyzing correlations in the experimental syndrome
data of the target error correction circuit without relying on
a theoretical device error model or on conducting separate
calibration experiments. We present an analytical expression
to calculate the probability of any independent error event

Published by the American Physical Society
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that has a unique signature in the stabilizer measurement
outcomes, based on the higher-order correlations in the exper-
imental syndrome data. This equation generalizes the result
by Spitz et al. [23], where an equation was derived for the
probability of errors that flip at most two syndrome ele-
ments. A similar result was recently independently derived
in Ref. [24]. Similarly to the error analysis method presented
in Ref. [21], our method allows for the characterization of
the full error model using the same circuit as is used for the
QEC experiment. This error model can be used to optimize
the parameters of various decoding algorithms, which we
illustrate by presenting a correlated minimum-weight perfect
matching (MWPM) decoder as an example. Specifically, the
probabilities of the different error events inferred with our
method translate to the weights of the matching graph. In
addition, the full error model can be used for characterizing
device performance under the same conditions as for the QEC
experiment. For example, crosstalk or control errors can be
identified from a discrepancy between Pauli X and ¥ error
probabilities, since simple gate error models that include only
dephasing and relaxation processes predict equal physical er-
ror probabilities for X and ¥ [25]. Correlated errors that flip
syndrome elements over multiple rounds, on the other hand,
can be indicative of qubit leakage [26-28] or error sources
such as high-energy impact events [29] that are detrimental
to the performance of the logical qubit. We apply the tools
we present to experimental data from a distance-three surface
code logical state preservation experiment performed on the
17-qubit device first introduced in Ref. [4].

The paper is structured as follows. First, we introduce our
implementation of the distance-three surface code and detail
how we extract the syndromes for a logical state preservation
experiment (Sec. II). We then explain how we have imple-
mented one of the most common decoding algorithms, the
minimum-weight perfect matching decoder, in the experimen-
tal demonstration of quantum error correction with the surface
code [4] (Sec. III). Finally, we present the theoretical tools
that allow us to characterize the error model of the device
based on the experimental syndrome data (Sec. IV). We find
a significant presence of errors that correlate with leakage of
the data qubits out of the computational subspace and have
signatures that span multiple syndrome elements over many
cycles, which we discuss in detail in Sec. V. These results
highlight the capability of our method to determine the error
probability associated with any observed syndrome signature
and demonstrate its utility both in diagnosing device errors
and in optimizing decoder parameters.

II. FROM ERRORS TO SYNDROME

The experimental data we present were taken for a distance
d = 3 surface code [4]. We start by giving a brief description
of the code and setting the terminology for the rest of the
paper. The surface code consists of a d x d square lattice
of data qubits; see red circles in Fig. 1(a), which encode a
protected quantum state. As a stabilizer code [16], it protects
states that are simultaneous eigenstates of a set of commuting
stabilizer generator operators (called stabilizers here), each
taking the value of +1. If we consider a square lattice with
the data qubits at the vertices, the stabilizers of the surface

code are the products of Pauli operators of the data qubits on
the vertices of each plaquette. The stabilizers Su; alternate in
the lattice between products of Z and X [see green and blue
squares in Fig. 1(a)],

SXi = l_[ XDJ' and SZi =

DjeN(Xi)

[l 2,

DjeN(Zi)

where N(Ai) denotes the set of data qubits on the vertices
of the stabilizer plaquette. At the center of each plaquette, an
auxiliary qubit Ai = Xi or Zi is used to measure the respective
stabilizer. Additionally, there are stabilizers located at the
boundary of the surface code lattice with a support on only
two data qubits. In total, the stabilizers of a distance d surface
code are adding up to (d — 1)> +2(d — 1) = d*> — 1 stabiliz-
ers. By constraining the protected state to a mutual eigenstate
of all the stabilizers, the dimension of the protected Hilbert
space is reduced by a factor of 2 for each of the stabilizers,
down to 2d2/ 241 =2, meaning that the protected subspace
corresponds to a single logical qubit. The Pauli operators of
the logical qubit are defined as two anticommuting operators,

[T . @

Djecolumn

ZLZ l_[ ZDj and XLZ

Djerow

which commute with all the stabilizers; see black lines in
Fig. 1(a).

The stabilizers are repeatedly measured during the oper-
ation of the error correction code, yielding values s5' with
m the index of the error correction cycle and Ai the as-
sociated auxiliary qubit. In our implementation, we use the
circuit shown in Fig. 1(b), which consists of single-qubit
Hadamard gates implemented using 7 /2 rotations around ¥
and virtual Z rotations [30], and four conditional phase flip
(C2) gates [31-33] that map the parity of the data qubits
to the auxiliary qubits, which are thereafter read out [34].
To reduce the number of two-qubit gates that are executed
in parallel, we apply the gates for Z-type stabilizers while
reading out the X-type auxiliary qubits and vice versa [4,35].
Therefore, the stabilizers of different types are read out at full
and half-integer values of the cycle index m = 1,1.5,2,...,
respectively. If the stabilizer value is —1 (indicating an odd
parity), the circuit flips the state of the corresponding auxiliary
qubit. Since we do not reset the auxiliary qubits between error
correction cycles, the measurement outcome for an auxiliary
qubit associated with a stabilizer value of —1 will alternate
between —1 and +1 in consecutive cycles. Therefore, we
infer the stabilizer value s\ = MA" M from the change in
consecutive readout outcomes MA’ = +1 rather than by the
measurement outcome in a given cycle.

Because the stabilizers involving X and Z operators of each
data qubit are repeatedly measured, all physical single-qubit
errors are projected onto bit and phase flips [36,37]. The bit
and phase flips of the physical qubits will cause some stabi-
lizers to flip and might also flip the logical operator values X;.
and Z;, depending on where the errors occurred. We express
the change of the stabilizer values in terms of the syndrome el-
ements o' = (1 — s s07)/2, which have the value o, = 1
or 0, if the value of stabilizer S4; at cycle m changed or did
not change, respectively. The process of deciding, based on
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FIG. 1. (a) The surface code grid with data qubits in red and auxiliary qubits for Z- and X-type stabilizer measurement in green and blue,
respectively. The physical device used in this work consists of the 17 qubits that are labeled. The support of the logical X, and Z; operators is
indicated with black lines. A compass indicating the orientation of the lattice (pointing north) is used to define the East and West boundaries (see
text). (b) The circuit for two cycles of stabilizer measurements, with data qubits as red circles and auxiliary qubits as split blue-green circles.
The circuit section highlighted with gray background implements the measurement of a single stabilizer, the building block of the surface code.
The propagation of an X error (orange cross) is indicated with orange (as X) and purple (as Z) lines. The readout outcomes that are flipped
as a result of the X error are marked with £. The grayed CZ gates involve qubits that are not explicitly shown in this circuit. (c) Conversion
of the errors shown in panel (b) into stabilizer values s,, and syndrome elements o,,. (d) The propagation of a 7 error (purple cross) on an
auxiliary qubit during the parity map. (e) Conversion of the error in panel (d) into stabilizer values and syndrome elements. (f) Examples
of error signatures due to common single-qubit Pauli errors. Pauli X and Z errors lead to two nonzero syndrome elements, categorized into
timelike (T), spacelike (SX 2 ), space-time (STX ), and hook (HX ) error classes. Pauli ¥ errors lead to error signatures with support on up to four
auxiliary qubits and classified into spacelike (Sy ), space-time (STY ), and hook (HY ) error classes. Errors on the boundary of the lattice can
have a signature on a single auxiliary qubit only (B) and readout misclassification errors lead to timelike signatures on syndrome elements two
cycles apart (T").

the syndrome elements, whether the logical operator values
have flipped is called decoding.
To successfully decode errors, we must know which syn-

ﬂlpS of stabilizer values s and to flips of syndrome elements
m , we find that the signature of such an error includes two
syndrome element flips. The events are detected on neighbor-

drome elements are flipped by each independent error process,
i.e., the signature of that error, and whether it flips any of the
logical qubit Pauli operators. As an example, let us consider
a bit flip (X) error on one of the data qubits, indicated by the
orange cross in Fig. 1(b). Note that this error is equivalent
to a phase flip (Z) before the preceding Hadamard gate on
that qubit. The error propagates to two neighboring auxiliary
qubits as phase flips via the CZ gates, and the phase flips,
in turn, change the outcomes of the following auxiliary qubit
readouts. As the effect of the error remains on the data qubit,
the auxiliary qubits will be flipped in every consecutive cycle,
leading to an alternating pattern of readout outcomes; see
Fig. 1(c). Converting the flips of readout outcomes MA' to

ing auxiliary qubits during the same cycle. We label all errors
with such signatures S*1* for errors with space-separated sig-
natures due to X and Z errors on data qubits. Another common
error is a phase flip (Z) error on an auxiliary qubit [see the
purple cross in Fig. 1(d)], or equivalently, a bit flip error just
before, during, or after readout. In this case, the error flips all
following readout outcomes M2’ on that auxiliary qubit Ai,
which then results in two consecutive nonzero syndrome ele-
ments; see Fig. 1(e). We label all errors with such signatures
as T for errors with time-separated signatures.

A few additional error classes are shown in Fig. 1(f); see
Appendix A for examples of error propagation and Table I for
a summary of all error classes we consider in this work. If an
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TABLE I. Summary of error classes and symbols.

Error class Symbol
Timelike T
Spacelike (X, Z) s¥iz
Spacelike @) sf
Space-time ()? ) sT*
Space-time @) ST’
Hook (X) H*
Hook (¥) H’
Boundary B
Readout misclassification T

X error occurs on a data qubit between the two CZ gates of
one half cycle, then the syndrome elements are flipped on the
neighboring auxiliary qubits in consecutive cycles. We label
such errors as STX for errors with a space-time separated sig-
nature. If an X error occurs on an auxiliary qubit that is used
to measure a weight-four Z-type stabilizer at the middle of
the parity map, then this error propagates as phase flip errors
to two neighboring data qubits that perform a gate with that
auxiliary qubit next. Depending on the gate order in the parity
map, these phase flip errors will flip two or four neighboring
syndrome elements of X type. We label such errors as HX for
X -caused hook errors. Bit flip errors on the auxiliary qubit at
other times during the parity map lead to a phase flip error
on zero, one, three, or four neighboring data qubits. Because
the neighboring qubits are part of a Z-type stabilizer, and
the application of a stabilizer has no effect on the quantum
state, then the error propagating to three or four neighboring
qubits is equivalent to errors on the complementary one or
zero neighboring data qubits. Therefore, these errors are in-
distinguishable from phase flip errors on data qubits, which
belong to the S*1# class. Again, due to the X-Z symmetry
of the code, the situation is the same for X errors on X-type
auxiliary qubits, in which case Z-type syndrome elements are
flipped.

In addition to X and Z errors discussed above, ¥ errors
can also occur at the same circuit locations. These errors have
signatures flipping both Z- and X-type syndrome elements.
We label the corresponding error classes as S”,ST', and H' .
Near the boundary of the surface code lattice, errors can have
signatures that include only a single syndrome element, which
we will label boundary errors B. Finally, we label readout
misclassification errors, for which the auxiliary qubit state is
incorrectly classified, but does not get flipped, as T’ errors.
These errors are equivalent to a correlated bit flip just before
and after a perfect measurement, and they flip two syndrome
elements on a single auxiliary qubit Am = 2 cycles apart.

We also consider two-qubit Pauli errors, not shown in
Fig. 1(f), which might arise due to the two-qubit gates. We
distinguish between the M## class, corresponding to a cor-
related phase flip error Z ® Z on the two qubits involved in
a two-qubit gate, and the MX! class, corresponding to a cor-
related bit flip error X X, X @Y, Y ®X,or Y ® Y. Other
two-qubit Pauli errors are equivalent to a single-qubit Pauli
error on one of the qubits before or after the CZ gate. While

we do not expect to observe correlated bit flips, errors of the
M?“ class could occur due to residual interactions between
the qubits [38] or a miscalibrated conditional phase of the CZ
gate.

III. AUXILIARY QUBIT GRAPH AND DECODING

There are various strategies for decoding the syndrome
data in the surface code [18,39-43]. Most accurate results can
be achieved by maximum likelihood decoding [44], in which
case all possible combinations of physical errors that are con-
sistent with the observed syndrome data are considered. Each
set of physical errors requires a corresponding correction of
the logical qubit state, and the decoder picks the correction
with the largest total likelihood. Since the number of physical
error combinations is exponentially large in code size and
number of executed cycles, maximum likelihood decoding
is prohibitively expensive for all but the very smallest of
codes [45]. Approximations of likelihood calculation using
tensor networks can reduce complexity [46], but these meth-
ods remain too slow to meet the stringent timing requirements
for large-scale error-corrected logical algorithms for which
decoding must be performed between the application of non-
Clifford gates in near-real time [9,21,47].

When looking at one type of auxiliary qubits at a time,
the signature of each physical error is given by at most two
syndrome element flips. Furthermore, a chain of neighboring
errors leads to flipped syndrome elements only at the ends of
the chain, since the syndrome element flips in the middle of
the chain cancel with each other. The resulting property that
syndrome flips come in pairs allows a much more efficient
MWPM decoder [44,48] to be used. In MWPM decoding, all
nonzero elements of the syndrome are matched in pairs. Once
the matching is completed, a unique logical correction opera-
tor can be inferred based on whether or not the logical operator
is expected to be flipped by the error chains in the matched
graph. By assigning a weight to each potential pair of nonzero
elements of the syndrome according to the likelihood of its
occurrence, the problem of finding the most likely matching
can be converted to finding the minimum-weight matching.

Compared to maximum likelihood decoding, this leads
to two approximations. Foremost, by decoding the Z- and
X-type stabilizers separately, we ignore correlations between
syndrome types, which can contain extra information in the
presence of errors that lead to flips of both types of stabilizers.
Second, we find the most likely matching, but ignore that sev-
eral (each individually less likely) matchings can potentially
lead to the same logical correction. Consequently, the logical
correction with the highest probability of success might differ
from the correction given by the most likely matching.

Next, we will discuss the detailed procedure of minimum-
weight perfect matching. We focus on this decoding approach
to provide a pedagogical account of the methodology, as
it is a widely used technique in the field and was em-
ployed in our previous work [4]. The first step, which
can be done offline before running the surface code ex-
periment, is to construct an auxiliary qubit graph (also
called a matching graph [49], ancilla graph [50], or de-
coding graph), where each vertex k corresponds to a

syndrome element o> of one type (X or Z), and each edge
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q = (k, k') corresponds to a statistically independent and
therefore uncorrelated error process, which flips the connected
syndrome elements k and k’; see Fig. 2(a). In addition, there
are two virtual vertices, which are connected to the syndrome
elements that can flip without a pairing syndrome element at
two opposing boundaries of the surface code lattice. Physi-
cally, multiple distinct independent errors can have the same
syndrome signature. Since we infer probabilities directly from
the syndrome data, these errors are indistinguishable and
treated as a single process to construct the auxiliary qubit
graph. An error probability p, is associated with each edge
of the auxiliary qubit graph. The edges and their probabilities
amount to the effective error model of the device, which
can be constructed either from an independent physical error
model or based on the correlations in the syndrome data [23],
the latter of which is the main topic of this work; see Sec. IV.

The second step of the MWPM decoding process is to
construct the syndrome graph, a fully connected graph where
vertices correspond to nonzero syndrome elements of the aux-
iliary qubit graph for a given experimental run; see Fig. 2(b)
for an example. Each edge ¢ in this graph is assigned a weight
w, defined as the negative logarithm of the total probability
that any chain of errors flips only the syndrome elements con-
nected by that edge. Up to first order in the error probabilities,
w, can be calculated as [50]

%w_m<2]1m) 3)

ReR reR

where R denotes the set of possible paths between the end
points of ¢ in the auxiliary qubit graph that do not go through
the boundaries, and r are the edges in one of those paths R.
A low edge weight indicates a high probability that a chain
of errors triggers the corresponding syndrome pair, while a
high weight suggests a low probability of such an event. These
weights can be precalculated once before the decoding, at
the cost of only a polynomial overhead in the code distance,
as [50]

w=—In(1-4)"-1, (4)

where w is a matrix of weights between all the potential nodes
of the syndrome graph, A (adjacency matrix) is the matrix of
error probabilities in the auxiliary qubit graph, 1 is the identity
matrix, and the logarithm is taken elementwise.

In a logical state preservation experiment, where the same
stabilizers are measured repeatedly, the system is expected to
exhibit time-translational invariance. Consequently, the error
probabilities are expected to remain constant from cycle to
cycle during the middle of the error correction process; see
Appendix B. Thus, one can calculate the error probabilities as
a function of only the cycle difference Am = m’ — m instead
of cycles m and m’,

o (Am)
Popiohy = PaiAj- o)

Note that in the first measurement cycles after the logical
state preparation and in the last measurement cycles before the
final measurement, the assumed time-translational invariance
of the protocol does not hold. Therefore, using this approxi-
mation of time-invariant error probabilities can lead to slightly
suboptimal performance.

@) (b)

OEE . L
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FIG. 2. (a) The auxiliary qubit graph for an example experimen-
tal run consisting of eight cycles of syndrome extraction. Vertices
correspond to the measured syndrome elements (red if the syndrome
element has a value of 1 and blue otherwise), while the edge thick-
ness indicates the per-cycle probability of an independent error that
flips the connected syndrome elements. The widths of the single-
ended edges pointing to top right and bottom left indicate boundary
error probabilities and their direction indicates to which boundary the
syndrome element is connected. (b) The syndrome graph. Vertices
correspond to the nonzero syndrome elements of the auxiliary qubit
graph, and the thickness and transparency of the edges indicate the
weight for the MWPM decoding. The minimum-weight matching
for this graph is indicated in red with a black border. Note that in
the auxiliary qubit graph thick lines indicate probable errors, but
in the syndrome graph, thin lines indicate low-weight error chains,
i.e., probable error chains. Due to the small distance (d = 3) of the
code, the four X-type auxiliary qubits can be spacially connected
in a one-dimensional chain through data qubits D2, D5, and D8
[see Fig. 1(a)]. This allows the corresponding syndrome graph to be
visualized in a planar layout, with the horizontal axis representing
the spatial dimension and the vertical axis representing different
cycles. For larger code distances, the graph would require a three-
dimensional perspective.

For example, for X-type stabilizers in a d = 3 surface
code [4], we can calculate the adjacency matrix for a maxi-
mum cycle difference of Amy,x = 2 as

AO AD 4® 9 0 B
ACD AO® AD A® 0 B
A ACD AGED A© AD A® B ©)
- 0 ACD  ACED A0 4 g
0 0 ACD 4D 4O p
0

0 0 0 0 0

with the cycle-shifted adjacency matrices containg the proba-
bilities of errors for which the signature spans Am cycles

@A = pGR; and @) =0. (D
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and the boundary adjacency matrix contains the probabilities
of errors with a signature on a single syndrome element

DXI1,BE 0
0 PX2,BW
B = : . 8
DPX3,BE 0 ®)
0 Px4,BW

Following the distance-three surface code layout and orien-
tation indicated in Fig. 1(a), we define an east and a west
boundary (BE and BW). To construct the boundary adjacency
matrix, note that the stabilizers X1 and X3 connect only to the
east boundary (BE via D3, D6, and D9), and the stabilizers
X2 and X4 to the west boundary (BW via D1, D4, and D7).
We have set the corresponding unconnected elements of B to
zero. We then apply Eq. (4) to precalculate the weights for
syndrome pairs up to Amp,x cycles apart.

As the final step, we run a minimum-weight perfect match-
ing algorithm on the syndrome graph [49-51]. The space
component of each matched edge corresponds to a set of
data qubits where an error has occurred. The time component,
arising from the space-time and auxiliary qubit errors, has no
direct effect on the logical operator value. When decoding the
X-type syndrome, each overlap of a data qubit in a matched
edge with the logical X; operator corresponds to a flip of
Xp that should be corrected. Correspondingly, flips of the
operator Z;_ can be inferred from the Z-type syndrome data.

Note that recent implementations of minimal-weight
perfect-matching decoders [52,53] achieve faster run times by
directly finding the perfect matching on the sparse auxiliary
qubit graph. This approach eliminates the need to construct
the syndrome graph with all-to-all connected edges and as-
signed weights [52].

With the goal of further improving the weight-inference-
based MWPM decoding, we investigate the use of a correlated
MWPM decoder (detailed in Appendix C). This decoder is
designed to better correct for ¥ errors, which flip both X-
and Z-type syndrome elements and thereby create correlations
between the two syndrome types. For the current distance
and error rates of the device, we do not observe significant
performance improvements, suggesting that the logical error
per cycle is not currently limited by ¥ errors. Nevertheless,
we expect this approach to become increasingly beneficial at
larger distances [54,55]; see Appendix C for details.

IV. FROM SYNDROME CORRELATIONS
TO ERROR PROBABILITIES

Having a good quantitative knowledge of the experimen-
tal errors occuring on a device is of high importance for
high-fidelity decoding, independently of the exact decoding
algorithm used. While many error processes can be character-
ized using independent measurements, the effective error rates
might differ when running the actual error correction experi-
ment, e.g., due to time drift of parameters or unaccounted-for
error mechanisms, like crosstalk. Therefore, we ideally want
to construct an error model for the decoder based on syndrome
data produced by running the same circuit as for the error
correction experiment. In this section, we explain, based on
experimental data, how this can be done.

Using the device presented in Ref. [4] (see also Ap-
pendix D), we prepare the logical state |0);, |1)r, |+)r, or
|—)L, acquire 16 cycles of stabilizer measurements, and fi-
nally read out all qubits. For each state, we perform 500 000
experimental runs, and remove the ones in which any of
the physical qubits are measured outside the computational
subspace, or the initial state is not the ground state, leaving
us with about 54000 runs per state. In the future, leakage
reduction units as well as leakage-aware decoders could be
employed to eliminate the need for postselection on no-
leakage events [26-28,56,57]. For calculating the syndrome
elements for the first and last cycles, we make use of the
known initial state of the auxiliary qubits, the initial parity
of the data qubits, and the parity of the data qubits from the
final readout.

The average per-cycle probability of detecting a nonzero
syndrome element on weight-four and weight-two stabiliz-
ers is (o) = 0.165(17) and 0.118(6), respectively, where the
uncertainty indicates the standard deviation across different
auxiliary qubits; see Appendix B. To visualize the correlations
between syndrome elements, characteristic of the error classes
discussed in Sec. II, we calculate the covariances C/(\?X)j be-
tween syndrome elements on auxiliary qubits Ai and Aj, Am
cycles apart, as

Cair = {om'onl an) = (o0 Yo an- ©)
The averaging (-) is done first over the experimental runs, and
then over the cycle index m. We omit syndrome elements from
the first and the last cycle when calculating the correlations,
since these syndrome elements are measured based on the ini-
tial or final state of the data qubits, and are not representative
of the mean value during the bulk of the experiment.

For Am = 0, we observe the highest covariance between
neighboring auxiliary qubits; see the first off-diagonal el-
ements of the matrix in Fig. 3(a). ThesAeA correspond to
correlated syndrome element flips due to S*/# and S errors.
The second off diagonal, which has significant but lower
covariance, corresponds to correlated syndrome element flips
on next-nearest neighbors, caused by hook errors such as H*
and H" . We find negligible covariance between syndrome ele-
ments that are spatially separated by more than two data qubits
(third off diagonal), suggesting that errors remain local, as
expected for uncorrelated single-qubit errors. Because we use
a pipelined stabilizer measurement circuit in which stabilizers
of different types are measured sequentially, the covariance
between syndrome elements of different types of auxiliary
qubits is detected at a half-cycle separation, i.e., Am = 0.5.
The nonzero covariances occur between neighboring auxiliary
qubits and are caused by S” and ST” errors. We observe the
highest covariance between syndrome elements on a single
auxiliary qubit between consecutive cycles of error correction
Am = 1, which corresponds to T errors. The high covariance
is an indication of the relatively higher probability of T-class
errors, being caused by auxiliary qubit dephasing and readout
errors. The nonzero covariances on the first off diagonal are
caused by ST* and ST” errors. There is almost no covariance
for Am = 1.5, and only diagonal elements for Am = 2. An
expected source of errors leading to Am = 2 correlations is
readout misclassification errors T’, where the auxiliary qubit
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state is misclassified without changing the qubit state. How-
ever, as we discuss in Sec. V, most of these correlations are
due to errors that can flip several syndrome elements over
many cycles, possibly related to leakage of the data qubits
outside the computational subspace.

For calculating the weights for minimum-weight perfect
matching decoding, we have to convert those covariances

into per-cycle error probabilities. An analytical formula for
this, assuming that every error flips at most two syndrome
elements, is presented by Spitz et al. [23]. Here, we have
generalized those equations for errors with signatures that flip
an arbitrary number of syndrome elements. In the general
case, the probability p;, ; that an error that flips n syndrome

.....

elements ;s ..., 0; OCcurscan be calculated as
|
- - (71)!117127("71)
{ U{ } <U]l 6j»rx>
----- jimyS{i in
Jtseees Jm St : (10)
(1 2pjl ~~~~~~ Jm )
{J1seeesdm}DAin, oesin}

see Appendix E for the verification of this formula and how it
relates to the formulas introduced in Ref. [23]. Here, we have
denoted 6; = 1 — 20; for brevity, and the indices i and j each
include both the auxiliary qubit index and the cycle number
at which the syndrome element is measured. The product in
the numerator is taken over all the subsets {ji, ..., j.} of
arbitrary length m of the set of syndrome elements {iy, ..., i,},
including the set itself, whereas the product in the denomina-
tor is taken over the supersets of a different arbitrary length m.
We provide the explicit form of the equation when accounting
for errors that can trigger up to four syndrome elements simul-
taneously in Appendix E. Compared to numerical methods for
finding the probability of an error that flips a specific set of
syndrome elements (see Sec. VI C of Supplemental Material
of Ref. [21]), using an explicit formula will likely be faster
and will not suffer from convergence problems.

Next, using Eq. (10), we calculate the probabilities of er-
rors that trigger various error signatures in the same dataset
as was used to calculate the correlations shown in Fig. 3(a).
Because each run of the N = 16-cycle-long experiment pro-
duces (d*> — 1)(2N — 1)/2 = 124 syndrome elements, it is
unfeasible to calculate the error probability for all of the 2'%*
signatures. We therefore only consider error signatures that
are caused by single-qubit Pauli errors at any position in the
circuit or two-qubit Pauli errors during a two-qubit gate, as
presented in Sec. II. To avoid introducing a bias into the ex-
tracted error probabilities by omitting the renormalization by
Dji.....j,, in the denominator in Eq. (10), we need to make sure
that we include all processes with highly correlated signatures
present in the system; see Appendix F. Failure to do so may
result in nonphysical (negative) error probabilities beyond
statistical fluctuations that require additional corrections [58].
To address this, we include two additional error signatures in
the analysis that account for highly correlated errors, which
we label C; see Fig. 3(c). First, we consider any subset of
flipped syndrome elements on up to nine consecutive cycles
on a single auxiliary qubit, and second, we consider any subset
of syndrome elements on auxiliary qubits neighboring one
data qubit, separated by up to two cycles. The maximum cycle
separation for both of these signature classes is limited by
the computational power, as the number of signature subsets
grows exponentially with the maximum cycle separation. The
C error class could be associated with undetected leakage of
the data qubits to higher transmon states, as we will show

in Sec. V. We average the probabilities of errors with the
same signature over the cycles (except the first and the last
cycle) to obtain the average probabilities for the 116 error
signatures stemming from Pauli errors in the circuit and 4360
error signatures belonging to the C class. The total probability
of an error per cycle from each of the 12 signature classes is
shown in Fig. 3(b).
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FIG. 3. (a) Average (over 16 cycles) covariance between pairs of
syndrome elements as a function of the time separation Am between
them. The syndrome indicated by the column is detected Am cycles
after the syndrome indicated by the row. The covarying qubit is
indicated on the top or bottom axis for Z- and X-type auxiliary qubits,
respectively. (b) Total error probability p of the various error classes
extracted from the experimental (solid gray bar) and simulated (blue
wireframe) syndrome correlations. The number above the bar indi-
cates the number of different error signatures that were considered in
that class. The error bars indicate the standard deviation of the total,
calculated as the square root of the sum of the squared deviations
from the mean within that class. (c) Schematic of the signatures that
are considered as the highly correlated C error class. That is, any
subset of the highlighted syndrome elements on one auxiliary qubit
over nine cycles or on multiple auxiliary qubits neighboring one data
qubit separated by up to two cycles.
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We compare the experimental results to a circuit-level
Pauli-error simulation, shown as blue wireframes in Fig. 3(b).
The simulation assumes uniform error probabilities across
the device, with the probability values based on independent
calibration measurements; see Appendix G for details. De-
spite this simplification, we observe overall good agreement
between the sum of error probabilities of each class obtained
from simulation and those extracted from the experiment. The
most notable difference is in the correlated bit flips due to
CZ gates, indicated by the MX" error class. These errors are
included in the depolarizing error model of the simulation, but
are not as pronounced in the experimental data. In simulations
with a depolarizing Pauli noise model, two-qubit gate errors
have been found to contribute most significantly to the logical
error probability [34]. However, if correlated bit flip errors are
rare for the experimental implementation of the CZ gate, as
we observe in our data, the effect of two-qubit gate errors on
the logical error probability in experimental realizations might
be more akin to single-qubit errors. Note that the simulations
do not include leakage and readout misclassification errors,
which could explain some of the residual differences between
simulations and experimental data.

The in situ error characterization method presented here
is especially useful for stabilizer codes, since it yields the
probabilities of errors with a given signature, which is exactly
the information needed for decoding, without resorting to
simulation of the circuit. Furthermore, the method allows us
to analyze spurious correlations between syndrome elements
not caused by known Pauli errors, and to identify whether
they lead to highly correlated errors, which are known to be
particularly harmful in quantum error correction [59,60].

V. DEVICE DIAGNOSTICS USING ERROR
PROBABILITIES

In this section, we study the per-cycle probabilities of
specific errors with various signatures. The signature of a
circuit-level error in the syndromes depends on the Pauli error
itself (for instance, single-qubit X,Y,orZ error) and on its lo-
cation in the circuit. In addition, several combinations of Pauli
errors and circuit locations can lead to the same error signa-
ture. Therefore, we start by categorizing the error signatures
according to the number v of possible combinations of Pauli
errors and circuit locations that can trigger it. Specifically,
we consider 15 two-qubit Pauli errors occurring at any of the
24 two-qubit gates of a single cycle, amounting to a total of
24 x 15 = 360 possible combinations; see Appendix H. We
omit signatures from the timelike errors class T in this anal-
ysis, since readout errors strongly enhance their probability.
If uniform depolarizing noise at every two-qubit gate was the
only error source, we would expect the error probability to be
directly proportional to the number of combinations that can
trigger that signature. Overall, we indeed observe a strong cor-
relation between the probability of an error signature and the
number of combinations of Pauli errors and circuit locations
that can produce it; see Fig. 4(a). This correlation suggests that
the variation in the probabilities of different error signatures is
largely determined by how frequently errors that can produce
each signature arise in the circuit. The correlation is also
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FIG. 4. (a) The probability p of triggering an error signature
as a function of the number of combinations of Pauli errors and
circuit locations v, which can cause the signature, extracted from
experimental (black) and simulation (blue) data. If there are multiple
signatures with the same number of circuit locations v, then their
mean probability and standard deviation are shown as dots and error
bars, while crosses indicate probabilities of single signatures. The
black (blue) line indicates a least-squares fit of the experimental
(simulated) data to a linear model. (b) Comparison of error proba-
bilities, px and py, for signature pairs that can only be caused by
an X or a ¥ error, respectively, at a specific location. Black crosses
correspond to experimental data and blue crosses to simulation. Due
to the symmetry of the physical error mechanisms with respect to Z
rotations, we expect the two probabilities to be identical, which is
indicated by the diagonal gray line. The red circle highlights error
probabilities of D2 during the X-type parity map, which deviate
significantly from the expectation (see text for details).

reproduced by the simulation with independently character-
ized parameters [blue markers and line in Fig. 4(a)].

Another application of the generalized error probability
extraction method is the identification of crosstalk and control
errors. For some circuit locations, there are unique signatures
for both X and ¥ errors, belonging to the classes of space-time
errors or hook errors due to X orY type errors, denoted as ST*
or HX and ST” or HY respectively. Since the physical energy
relaxation and pure dephasing of the qubits is described by
an error channel that is symmetric with respect to X and
¥, we expect the corresponding extracted error probabilities
px and py to be equal [25]. We find py =~ py for all error
pairs in simulation and in experiment, see Fig. 4(b), except
for errors on D2 during the X-type parity map (black cross
circled in red), for which py &~ 2py. Control errors arising
from miscalibrations that cause systematic under- or overrota-
tions could explain this discrepancy because they can increase
the likelihood of X errors without increasing the probability
of ¥ errors, causing py to be larger than py. An alterna-
tive source for this undesired rotation could be microwave
crosstalk during the X-type parity map affecting D2. How-
ever, this explanation appears less likely, as an independent
characterization of microwave crosstalk indicates that D2 is
not significantly affected by microwave pulses applied to the
drive lines of other qubits on the device (see Supplemental
Material of Ref. [4]).

Next, we analyze the potential origin of the signature
class of errors that cause longer time correlations, introduced
as C. As the first observation, we investigate the timelike
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correlations in the experimental syndrome data, and find that
the covariance between syndrome elements on a single aux-
iliary qubit Am cycles apart decays exponentially as 0.894™;
see Fig. 5(a). Ideally, we expect the correlations for Am > 2
to be zero. The slow decay could be an indication of leakage
of the data qubits [61] that is not removed by the leakage
rejection scheme based on the final readout of the data qubits.
This hypothesis is supported by the observation that without
including long-timescale error-class signatures in the analy-
sis, the error probability for T’ signatures is higher at the
beginning of the experiment when the leaked data qubits have
several cycles to seep [62] back to the computational subspace
before the final readout at the end of the experiment; see black
filled dots in Fig. 5(b). If we do not reject any runs based on
the final data qubit readout, then the error probability does
not depend on the cycle number and is comparable to the
error probability with leakage rejection close to the first cycle;
see open black circles in Fig. 5(b). Alternatively, the slow
decay could also be an indication of the probability of bit
flip errors varying during the data acquisition period, which
would introduce correlations between errors with a large time
separation; see Appendix I for an example. The varying error
rate could be caused by the asymmetry of the energy relax-
ation channel and readout errors, implying that the effective
bit flip error rate for auxiliary qubits depends on whether
they spend more time in the ground or excited state, or by
changes in the rate of quasiparticle generation and tunneling,
for example, due to impacts with cosmic rays [29]. Because
quasiparticle tunneling can also cause leakage [63], then it
would be consistent with the suppression of errors when data
qubit leakage rejection is used, but asymmetry of the energy
relaxation channel alone could not explain our observations.

With the goal of taking into account highly correlated
noise processes of the experiment, we include the C class
signatures in the analysis. Due to the renormalization term in
the denominator of Eq. (10), accounting for these additional
processes gives us a more accurate value for the probabil-
ity of T’ errors. With this analysis, we find that the error
probability of readout misclassification errors T” only weakly
depends on the cycle number and whether data qubit leakage
rejection is used or not; see filled and open purple squares
in Fig. 5(b). Furthermore, the error probabilities extracted
using the improved analysis are consistent with the separately
characterized overlap error of auxiliary qubit readout, which
is the expected mechanism for T’ errors; see Fig. 5(c).

VI. CONCLUSION

An accurate error model of the quantum error correc-
tion circuit is a crucial component for any high-fidelity
decoder. In this work, we explained in detail how the syn-
drome is generated under a circuit-level Pauli noise model.
We presented a closed-form analytical method for calculat-
ing the error probabilities of errors with a given signature
from the correlations between syndrome elements of arbitrary
weight. We used these error probabilities to calculate the
weights of a minimum-weight perfect matching decoder as
used in Ref. [4], the nuances of which we also explained.
Furthermore, a correlated matching decoder is employed to
harness the correlations introduced by ¥ errors between both
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FIG. 5. (a) Covariance between syndrome elements on a single
auxiliary qubit Am cycles apart, averaged over the eight auxiliary
qubits. The error bars indicate one standard deviation over the dif-
ferent qubits. A fit to an exponential decay model for Am > 2 is
shown as a black line. (b) Extracted probability of an error triggering
a syndrome configuration corresponding to measurement misclassi-
fication T (Am = 2) as a function of the number of cycles until the
final data qubit readout. The four data series correspond to using
data qubit leakage rejection or not and including leakage-related
syndromes in the analysis or not. The data are averaged over the
auxiliary qubits. (c) Average (over cycles) T’ error probability of the
eight auxiliary qubits as a function of the independently character-
ized readout misclassification error py,.. The gray line indicates the
expected identity relation pr = ppc.

syndrome graphs to increase the decoding performance by a
modest but stable amount. In addition, the error model can be
used to analyze the crosstalk, control, and leakage errors, mea-
sured using the same circuit as is used for executing the error
correction experiment. We identified control errors on one of
the data qubits, leading to an imbalance of X and ¥ errors. We
also identified errors with signatures spanning multiple syn-
drome extraction cycles, which are consistent with undetected
leakage on the data qubits or quasiparticle tunneling.
Although characterizing errors based on syndrome data
taken directly from executing the error correction circuit can
be a powerful tool, one needs to be aware of its limitations.
First, even though the analytical formula allows to easily
calculate the probability of errors that trigger an arbitrary
number of syndrome elements, it is not feasible to calculate
the probabilities for triggering all possible signatures, as the
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number of signatures is exponentially large in the number of
syndrome elements. Therefore, some errors with nonstandard
signatures might be excluded from the model. Second, this
method requires many experimental runs of the error cor-
rection circuit to accurately estimate the syndrome element
correlations used to calculate the error probabilities. Because
of the renormalization terms in the denominator of Eq. (10),
the more high-weight signatures are included in the model, the
more the uncertainties of errors with lower-weight signatures
increase. Furthermore, if the error model parameters drift
during the time it takes to gather the necessary amount of
statistics, then spurious correlations can appear in the data.

The main advantage of the presented method is that the
error model is extracted from experimental data obtained by
executing the same quantum circuit that we used to run the
quantum error correction code. This allows for the identifi-
cation of error sources, such as crosstalk, that may not be
captured in isolated characterization experiments. Further-
more, the fact that the probability of errors with signatures
of arbitrary weight can be calculated is beneficial for identi-
fying error models that include ¥ errors. This can be used for
improved decoders that account for correlations between X-
and Z-type stabilizers, which we demonstrated for a modified
version of the matching decoder [64]. The inference of error
processes causing higher-weight signatures can potentially
benefit also other decoders, such as belief matching [43] and
tensor-network-based [46] decoders. As we have shown, the
method can also be used to characterize errors with high-
weight signatures, which can cause systematic deviations in
extracted single- and two-qubit error probabilities if unac-
counted for.
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APPENDIX A: ERROR SIGNATURES

To see which error signatures are expected due to physical
errors, we place single-qubit X and Z errors between each pair
of neighboring operations in the syndrome extraction circuit,
and propagate the errors through the circuit to see which
auxiliary qubit readout outcomes are flipped due to the error.
The set of single-qubit Pauli errors shown in Fig. 6 covers all
possible error locations if we account for the symmetry of the
error extraction circuit with respect to change of the auxiliary
qubit types. The propagation and signatures of single-qubit Y
errors and errors of class M?? and M*? can be constructed as
the sum of the propagations of the constituent X and Z errors.

APPENDIX B: SYNDROME PROBABILITY
VERSUS CYCLE

To motivate the assumption of cycle-independent error
rates, we calculate the mean syndrome element values for each
stabilizer and each cycle; see Fig. 7. The stabilizers matching
the type of the prepared state are measured on whole-integer
cycles, while the other stabilizers are read out on half-integer
cycles in the pipelined surface code circuit. The syndrome
elements at the middle of the experiment are calculated based
on auxiliary qubit measurement flips over two error correction
cycles and are therefore sensitive to physical errors happening
during two error correction cycles. On the other hand, the
first and last syndrome elements for the stabilizer type of
the prepared logical operator (Z or X;) make use of data
qubit readout results to calculate the value of one of the
stabilizers and are sensitive to errors during a single round of
error correction. Therefore, the syndrome elements and error
probabilities at the time boundaries are expected to have a
different mean value. Overall, we find that the mean syndrome
element values are increasing very slightly over the course of
the 16 experimental cycles.

APPENDIX C: CORRELATED MWPM DECODING

In this Appendix, we present a correlated MWPM de-
coder, with the goal of improving the weight-inference-based
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FIG. 6. Examples of syndrome generation due to physical X (orange cross) and Z (purple cross) errors at all possible circuit locations.
Multiple crosses in the same panel indicate equivalent errors. The squares indicate Hadamard gates, vertical lines CZ gates, and rectangles
readouts. Orange and purple lines indicate the propagation of X and Z flips through the circuit. At the right-hand side of each panel, the
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are shown in panels (c)—(h), respectively.
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MWPM decoding described in the main text. We refer to the
latter approach here as “standard” or uncorrelated MWPM.
The correlated MWPM decoder is designed to better correct
for ¥ errors, which flip both X- and Z-type syndrome elements
and thereby create correlations between the two syndrome
types. The idea of harnessing the correlation of both syndrome
types and performing a correlated decoding has been explored
in complementary works such as Refs. [41-43,54,64—68]. Our
strategy for making use of the correlations between syndrome
types is to iterate between decoding the two syndrome types,
updating the weights based on the results from the other
decoding graph.

For syndrome matching, we can only utilize errors with
signature weight of at most two. Including higher-order error
signatures in the decoding graph would turn it into a hyper-
graph (where edges can connect more than two vertices), on
which finding the minimum matching is no longer efficient.
A Y error can have a signature of weight two, three, or
four when considering the joint syndrome, but not more than
weight two on either syndrome type. Therefore, in the stan-
dard MWPM, the high-weight syndromes of ¥ errors are split
and a matching can be performed at the expense of treating
single ¥ errors as two uncorrelated X and Z errors. In the
correlated MWPM, we first decode one syndrome graph in the
standard way. Using the information about the decoded errors,
we update the other auxiliary qubit graph with the conditional
error probabilities, given the decoded errors on the first graph.

As an example, consider an error signature flipping three
syndrome elements—two Z type and one X type. Let us as-
sume that the X-type syndrome decoding is performed first
with nonmodified weights. Then, the deduced correction will
serve as a flag for the Z-type syndrome decoding to consider
the conditional probability of having a ¥ error given a Z error

instead of the joint X error probability. For the conditional
probability, the leading-order contribution consists of taking
the Y error probability divided by the probability of finding
the local X-type syndrome that was corrected in the previous
Z-type syndrome decoding; see Eq. (C2).

Based on this procedure, we can alternate the decoding of
both syndrome types while updating the weights until neither
decoding outcome changes any more or until a predetermined
maximum number of decoding rounds is performed. In prac-
tice, we only find minor changes to the decoded logical fidelity
after the first iteration. We therefore restrict ourselves to one
iteration of the weight update. In addition, to control the sta-
tistical uncertainty of the new weight, we do not fully replace
the weight, but take a weighted average between the old and
the new value instead. We find the highest logical fidelity for
a weight of y = 0.09, where y =0 and y = 1 correspond
to keeping the old weight and fully replacing the weight,
respectively. This implies that for too large values of y, the
modification of the weights to include the possibility of ¥
errors also breaks the correct decoding for some instances; see
Appendix C 3 for details. We suspect that statistical uncertain-
ties of the inferred weights are at the origin of this problem.

Overall, we observe a slight improvement in decoding
performance when using the correlated MWPM decoding
protocol compared to the standard approach, although the
difference is not statistically significant (see Fig. 8). We expect
this method to deliver more substantial performance gains
at larger code distances. In that regime, the decoder’s en-
hanced ability to accurately account for ¥ errors allows for
more informed decisions among a broader set of correction
options, thereby potentially reducing logical error rates. This
expectation is supported by simulations [54] and has been ex-
perimentally validated in Ref. [55] using data from Ref. [21].

In the Appendixes below, we provide further background
on the principles of correlated MWPM using illustrative ex-
amples and elaborate on our implementation of the decoder.

1. Illustration of the probability update

To give an example of how probabilities can be updated
during the correlated matching, we consider a simplified set-
ting where symmetric depolarising errors are placed on data
qubits with probabilities p* = p* = p' = p/3 before a per-
fect syndrome readout. Accordingly, all edges in both the X-
and the Z-type decoding subgraphs are given a weight of w =
—In2p/3. Now, we assume that a physical ¥ error occurred
and that we perform the matching on the X-type syndrome
subgraph first with the initial weights. The decoding yields
the correct result of applying Z as a correction. We can now
reevaluate the probability of having had an X error for the
Z-type syndrome decoding problem. This probability is given
by the conditional probability of having X conditioned on
having found Z:

0 A D Y 2
pR12) = PELD P PO 1,
p(Z) PP +0P) 2 <

Consequently, the probability of having an X error at the spe-
cific location that was heralded by the decoding of the X-type
syndrome increases the probability from 2p/3 to ~1/2. Here,
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FIG. 8. Comparison of the MWPM decoding fidelity of the Z;
basis with initial state |0); using the standard weights (std, black)
of syndrome weight up to two, not taking into account ¥ errors,
and the modified weight (mod, red) where the decoding is repeated
once and weights are updated using conditional probabilities based
on the inferred ¥ error signatures. For better visibility, the error bars
are scaled by a factor 10. The inset shows the differences in fidelity
of the two MWPM decoding variants. The employed weights were
calculated based on the same data used for calculating the shown
fidelities.

the value of 1/2 is the coin flip probability between having
found a genuine Z error or a ¥ error that in turn would carry
the Z error in addition to X. As a next step, the decoding of the
Z-type syndrome can be performed on a graph where all edges
but one carry the weight w = —In2p/3 and the edge that
corresponds to an X correction has a weight of w = —In 1/2,
due to the adapted probability.

2. Correlated decoding under circuit-level noise

For circuit-level noise and inferred error probabilities, we
update a dressed probability by replacing it with the condi-
tional probability for having an effective X (Z) error. This
update is conditioned on finding the complementary effective
7 (X) error from the previous decoding outcome. The con-
crete update signature and conditional probabilities depend
on the circuitry and how ¥ errors propagate. To illustrate
this with an example we assume circuit-level ¥ errors with
probability p oZAT GTAT XAy that trigger the Z-type stabiliz-

ers (A,,A ) at tlme”s (m m) and the X-type stabilizer A at
time m”. These elementary errors are additional to genuine
X and Z errors that have a signature one syndrome type. For
simplicity, we are going to use the notation o = (A;, m) to
indicate the space-time coordinate of a syndrome element. We
denominate the corresponding elementary error as ¥,, which
causes the syndrome signature v = (¢, 0§, o) and occurs

by probability pfoz o7
T p Ty
we perform an initial uncorrelated MWPM decoding on the
X-type syndrome graph by which the matching suggests that a
Z, error has happened. Such interpretation between matching

and error suggestion relies on the notion of elementary errors.

We assume now a setting where

For the latter, we assume that an edge that is included in
the matching attributes a most likely error on the data qubits
that can be taken as the correction. Considering the concrete
matching example, the flip of the single syndrome element o;‘

is matched to a boundary, which corresponds to a Z error at a
location specified by v. Having obtained this information, we
would like to properly adapt the error probability ﬁ)((a,f,a;) of an

X -type likeliest error that is attributed to the edge («, 8). The

weight of this edge would be updated for a round of correlated

bit flip decoding. This is done by replacing ﬁ)(‘gz o7) with the
o« %

conditional probability of finding an X, error given a Z, error
is present (known from decoding):

A A Y
p(XU /\ZU) ~ p(f"z GZ X)
P(Zv) Za ﬁ’p(a U aX)+ﬁZ '

It is important to stress that this update only takes place
if and only if the matching correction, here ZU, is suggested
by the complementary decoder. To explain the conditional
probability of Eq. (C2), first we note that it is a leading-order
approximation in terms of the error rate. The numerator is
given by the probability of having both an X and a Z error
at the appropriate space-time coordinate. To leading order,
this corresponds to the inferred ¥ error probability. In the
next order, terms like p¥ - p? would contribute as well but are
omitted in this work. In the denominator of Eq (C2), we find
the leading-order probability of exhibiting a Za, error, Wthh
can emerge due to a proper Z error with probability p x or

pX1Z,) = (C2)

by means of a ¥ error. With regard to the latter, there mlght
exist a set of ¥ errors that are degenerate with respect to the
signature on the X-type syndrome. That is, there are multiple
Y errors that cause the same X-type syndrome but different
Z-type syndromes. Over the corresponding probabilities, we
perform a summation - The adaption of the weight in
this manner can be done for the Z-type syndrome decoding as
well given a previous X-type syndrome decoding serving as
the flag for it to be applied. The weight update in this way can
also be applied for Y error propagations that have weight-two
or weight-four signatures on the joint syndrome. The correct
weight update depends on these propagations that in turn are
dictated by the stabilizer readout circuitry.

3. Application to the experimental data
and interpolation approach

We perform weight updates that are compatible with the
syndrome signatures of all possible ¥ error propagations
based on the circuitry in Appendix H. Note that the syndrome
according to a Y error propagation needs not to be contained
in one measurement cycle but can also span between two
consecutive rounds of stabilizer readout depending on the gate
order. As mentioned in the main text, given an update rule, the
decoding of both subgraphs can be repeated until no change
in the decoding is observed. Practically, it is sufficient to only
repeat the decoding once, taking the modified weights for
the experimental data analyzed in this work. The conditional
probability, used for modifying the error probabilities, comes
with a statistical error as it is a function of quantities inferred
from the experimentally observed syndrome statistics. This
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uncertainty is genuinely larger than the uncertainty of the
unaltered probability. We observe that this can have a deteri-
orating effect on the decoding result. Therefore, we relax the
update of the probability by interpolating between the old and
the new error probability. For the previous example update,
that means to replace the standard weight by

’ _ ~X
w(oaz,aﬁz) - _(1 - )/)]l’l (p(adz,ng))

Y
p(aaz,aﬂz,a;‘)

Y ~
Za’,ﬂ’ p(af,,crz (7;() + pi;‘

8

—ylIn

. (C3)

where y € [0, 1] is an interpolation parameter that we set to
0.09 for the decoding results shown in Fig. 8. We observe
that for larger values of y, the fidelity is not constantly im-
proved for each number of measurement rounds; see Fig. 9(a).
Already for values slightly above y = 0.09, the decoding per-
formance worsens for small and larger number of rounds. For
only few syndrome readouts, this decreased fidelity persists
also for larger values of y. As this maximal y value for
obtaining a good performance in decoding is relatively low,
we conjecture that at this level of statistical fluctuations of
the weights, the influence of these fluctuations outweighs the
improvement of including ¥ error information such that mini-
mizing the uncertainty is prioritized to improve the decoding.

4. Influence of statistical fluctuations

To investigate the effect of the statistical error on the
decoding performance qualitatively, we re-run the modified
and unmodified decoding on a simulated dataset with larger
size and therefore lower statistical fluctuations compared
with the experimental data. We perform simulations of the
distance-three surface code with identical circuitry under de-
polarizing circuit-level noise. For this model, each circuit
element exhibits a depolarizing error with probability p after
the execution of the circuit element. Of course, such simplistic
one-parameter noise model is not intended to fully capture the
actual experiment of Ref. [4] but shall only serve as a tool to
understand the effect of statistical fluctuations of the weights
on the decoding performance. We perform such simulation
for a fixed error rate of p = 1073 and a sample size that has
about 12 times more syndrome readouts as compared to the
experimental data. These readouts distribute into 10° shots per
bin of number of readout rounds. Note that in the experimental
data, especially for a larger number of readout rounds, the
datasets are much smaller.

We expect a lowered statistical uncertainty for this numer-
ically generated dataset compared with the experimental data,
and we infer weights from the sampled data and perform both
the uncorrelated and the modified MWPM. We indeed find
that now much larger values of y correspond to a consistent
performance increase. We find that this improvement of the
modified over the uncorrelated MWPM decoder only breaks
down for values as large as y > 0.8, see Fig. 9(b), instead
of y > 0.09 as for the experimental data. Another intriguing
difference for the behavior of the relative improvement com-
paring experimental and simulated data is the smoothness that
can be observed in the latter.
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FIG. 9. The relative improvement in fidelity of repeating the
MWPM once after updating the weights as a function of the number
of error correction cycles N and the update strength y for (a) the
experimental data and (b) simulated data under depolarizing circuit-
level noise. The relative improvement is defined as @, where

F= @ is the average fidelity.

To investigate this further, we also simulate the surface-17
code under a heterogeneous error model where the error rates
for two-qubit gates and single-qubit gates are drawn from
normal distributions N'(1.5%, A - 1%) and N(0.09%, A -
0.04%), respectively. The variable A scales the width of the
normal distribution from which the error rates are drawn.
The numerical values mimic now for A = 1 the noise level
in the experiment (compare to Ref. [4]). Note that the error
rate for each gate is only drawn once and then kept fixed
for all gate executions. The underlying idea for simulating
a heterogeneous error model is that the resulting inferred
weights will break degeneracies in the matching problem that
would only be broken in correlated matching if one con-
sidered a homogenous error model where all error rates are
identical. Following this line of reasoning, a more realistic
and heterogeneous error model might reduce the improve-
ment of the correlated matching. The parameter A can be
used to control the degree of heterogeneity of the error
model. In Fig. 10, the relative improvement is plotted for a
fixed number of 16 stabilizer measurements by varied A and
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FIG. 10. The relative improvement in fidelity of correlated
MWPM compared to uncorrelated MWPM for simulated data with
a heterogeneous error model. The scale of fluctuations of gate error
rates A is shown on the vertical axis, while the strength of the weight
update interpolation y is shown on the horizontal axis.

interpolation strength y. The dataset size of this simulation
is chosen as for the homogeneous error model simulation.
Each value of A corresponds to a new set of simulated data.
It is observable that for smaller A, stronger updates should
be performed. Overall, we recover the nonsmooth behavior
of the improvement metric, which we also found for the ex-
perimental data in Fig. 9(a) as a result of increased statistical
fluctuations.

APPENDIX D: QUANTUM DEVICE

The quantum processor is fabricated from a 150-nm-thin
niobium film on a silicon substrate, from which the transmon
islands, resonators, and control lines are patterned using opti-
cal lithography. To realize coplanar waveguide crossovers and
to connect different parts of the ground plane, we fabricate
airbridges from an aluminum-titanium-aluminum trilayer. The
Josephson junctions are fabricated from aluminum using elec-
tron beam lithography and shadow evaporation. Each of the 17
qubits (yellow) has an individual microwave drive line (pink)
and flux line (green); see Fig. 11. The qubits are capacitively
coupled via a coplanar waveguides (cyan) to achieve an aver-
age qubit-qubit coupling rate of J/2x &~ 6 MHz and a mean
interaction time for a dynamic flux pulse-based CZ gate [33]
of 68ns. For dispersive readout, we couple the qubits to
readout resonators (red), which are coupled to four frequency-
multiplexed feedlines (purple) via individual Purcell filters
(blue) to suppress qubit decay and readout crosstalk [69]. The
qubit and resonator frequencies, anharmonicities, and coher-
ence properties are given in Table II. The readout resonator
frequencies (6.769-7.554 GHz) are above the auxiliary qubits,
which are biased to their upper flux-insensitive frequencies
(5.885-6.192 GHz), and the data qubits biased to their lower
flux-insensitive frequencies (3.740—4.143 GHz). The excep-
tion to the above is the auxiliary qubit X1, which is biased
to its lower flux-insensitive frequency to avoid interactions

_— . s
Qubits

W Drive [ Flux l"CoupIingk' Readout lPurceII Feed

Lines Lines Elements Resonators Filters Lines

FIG. 11. False-color optical micrograph of the 17-qubit quantum
processor used in this work. See text for details about the device.
Figure adapted from Ref. [4].

with a strongly coupled defect near its nominal bias frequency.
We find a mean single-qubit gate error of 0.09% =+ 0.04%
in randomized benchmarking [70], and a mean CZ gate
error of 1.5% = 1.0% in interleaved randomized benchmark-
ing [71,72].

APPENDIX E: DERIVATION OF THE GENERAL ERROR
PROBABILITY FORMULA

In this Appendix, we derive Eq. (10) for calculating the
probability p;, ; thatan error that flips #n syndrome elements
i} to i, occurs, given the correlations between the observed
syndrome elements o;.

We start by introducing the notation for the random vari-
ables involved in the problem. Let P, _; be the random
variable that indicates whether an independent error that flips
the syndrome elements {ii, ..., i,} occurred (P, . ; = —1)or
not (#;,,..;, = +1). Note that because the random variables
take values =1, its square is always one: P; , =1. The
probability we are looking for is then expressed as the expec-
tation value p;, ._;, = (1 — (P;_.;,))/2.

To gain some intuition about this variable, let us write out
the expressions for all possible syndrome element correlations
in terms of these random variables in the case of a small
number of total syndrome elements. Again, we use the no-
tation 6; = 1 — 20, = £1 for the syndrome element at node
i, for brevity, and consider the index i to include both the
qubit index and the detection time of the syndrome element.
We have the following sets of equations for one syndrome
element:

61 =P, (61)=(P1),
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TABLE II. Qubit parameters, coherence properties, and single-qubit performance for the nine data qubits (top) and the eight auxiliary
qubits (bottom). We also provide, for relevant quantities, the averaged value across the device in column Q. RO stands for readout and RB

stands for randomized benchmarking.

Parameter D1 D2 D3 D4 D5 D6 D7 D8 D9
Qubit idle frequency, wy /2w (GHz) 3.885 3.994 3.952 3.878 3.895 3.740 4.056 3.993 4.143
Qubit anharmonicity, /27 (MHz) —184 —183 —183 —184 —186 —184 —181 —183 —181
Lifetime, T} (us) 31.1 29.0 69.9 55.5 327 59.1 332 25.8 30.3
Ramsey decay time, 7," (us) 36.9 14.3 36.3 87.5 45.7 16.8 47.6 37.8 46.5
Echo decay time, T (us) 472 48.6 46.5 87.8 54.2 24.1 49.9 459 51.7
Readout frequency, wgro /27w (GHz) 6.769 6.979 6.880 7.120 7.180 7.032 6.910 7.075 6.868
Qb. freq. during RO, w}, /27 (GHz) 5.321 4.750 5.275 4.250 4.420 5.130 4.395 3.993 5.000
Qubit-RO res. coupling, gq rr/27 (MHz) 244 269 241 241 238 244 267 265 260
Single-qubit RB error, €,q (%) 0.06 0.07 0.04 0.04 0.06 0.06 0.04 0.08 0.06
Two-state readout error, ey (%) 0.7 0.6 0.5 2.7 1.9 1.0 2.0 0.8 0.4
Three-state readout error, e}% (%) 6.2 1.7 8.0 5.4 3.0 2.4 34 4.1 1.1
Parameter X1 X2 X3 X4 Z1 Z2 73 Z4 Q
Qubit idle frequency, wy /27w (GHz) 4.429 5.885 6.022 6.049 6.328 6.192 5.956 6.037 4.849
Qubit anharmonicity, /2w (MHz) —181 —174 —170 —170 —163 —168 —171 —170 —177
Lifetime, 77 (us) 17.8 15.3 18.6 16.3 213 45.4 29.1 19.2 323
Ramsey decay time, 7;* (us) 21.6 20.3 219 27.8 37.8 34.2 49.8 25.8 35.8
Echo decay time, T (us) 30.1 30.3 15.6 31.2 38.7 27.6 52.7 36.2 423
Readout frequency, wro/2» (GHz) 7.372 7.554 7.258 7.461 7.316 7.502 7.200 7.412 7.170
Qb. freq. during RO, wj, /27 (GHz) 5.900 5.885 6.022 6.049 6.328 6.192 5.956 6.037 5.347
Qubit-RO res. coupling, go—rr /27w (MHz) 167 168 167 168 171 170 167 171 213
Single-qubit RB error, €,q (%) 0.16 0.13 0.17 0.14 0.10 0.09 0.07 0.16 0.09
Two-state readout error, € (%) 0.8 1.2 0.9 0.6 0.9 0.5 0.5 0.6 1.0
Three-state readout error, €\ (%) 1.3 3.2 3.5 1.5 2.1 1.6 5.2 1.3 3.2

two syndrome elements:

and three syndrome elements:

67 = PPy,

5162 = PLPyPh, = PPy,

61 = PP, (61) = (P1)(Pr2),

(62) = (P2)(P12),
(6162) = (PI){P),

61 = PiPpPi3Ps,  (61) = (P1)(P12)(P13) (P123), (Ela)

G2 = PPaPiPio3,  (62) = (P2)(P12)(P3)(Pi23), (E1b)

63 = P3Pi3PiPios,  (63) = (P3)(P13) (Pa3) (Pi23), (Elc)
5162 = PPy P Pi3PysPhy = PiPaPisPys,  (5162) = (P1)(P2) (P13)(Pa3), (E1d)
8163 = PiPsPuPPysPlhy = PP PPy, (6163) = (P1)(P3)(Pia) (Pa3), (Ele)
5263 = PyPsP P3Py Py = PaPsPiaPis,  (6283) = (P)(Ps) (P2} (Pi), (E1f)
816263 = PIPPsPLPL PPy = PLPaPsPros,  (6165263) = (P1)(P2) (P3) (Pro3). (Elg)

(

We observe that the expression for correlation (6}, - - - Gj,)
..... k,) that
have an overlap in the indices at an odd number of places; i.e.,
HJjt, -5 Jm} N ki, ..., kg}| is odd. This stems from the fact
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correlations B:
I | !
(e Jm} € {1, .1}
m is odd
B= (6, -+ 65);
m is even

where r is the total number of syndrome elements in the
system. As an explicit example, for r = 3, we get

A = (61)(62)(63)(616263),
B = (6162)(6163)(6263).

We will analyze how many times an expectation value
(Py,.....k,) 18 present in either of the products A and B.

First, if {k;, ..., ky} is not the full set of indices in the
system {1,...,r}, then there exists a syndrome element
k' ¢ {ki,..., k;}. We can then, for each correlation factor
(6j,...6},) in A, find a partner in B, such that it only differs
by the presence of the syndrome element &’. These two factors
will both either include or not include (P, ... k,)» as the addi-
tion or removal of the syndrome element k&’ will not influence
the parity of the overlap [{ji, ..., ju} N {ki, ..., k;}|. In the
r = 3 example above, we find that the term (Pj,) has the same
power in both A and B, since we can pair the factors such
that they only differ by the presence of 3. From Eq. (E1), we
see that both (6) from A and (&,63) from B have the factor
(P12). Similarly, both (6,) and (6,63) have (Py»), and neither
(6162,63) nor (616,) have (Py»). (&3) from A would pair with
the expectation value of no syndrome elements in B, neither
of which has that factor (P;,).

Second, in the case of {ki, ..., k;} = {1, ..., r}, the parity
of the overlap is uniquely determined by the parity of the
correlation factor, which is odd for all factors in A and even for
all factors in B. Therefore, B will not have the factor (P __,),
and A will have it as many times as many different ways we
can choose an odd number of indices from a set containing r
indices. This can be calculated using the binomial theorem as

E (g

mefl,..., r} m=0
m is odd

=((1+1) —1-1")p2=2""

In the » = 3 example above, each of the 21 = 4 factors of A
contains the factor (Pj»3), while none of the factors of B do;
see again Eq. (El).

Combining the results that A and B have the same number
of factors (Py,, .« ) if {ki, ..., k4} # {1,..., r} and that only

,,,,,,,

A has (P, ,) with a power of 271 we get the following
result:
I1 (G- 65.)
{isees Jmy S {1, .., r}
a1 A m is odd
(P, = 3= ~ =
[1 (6, ---65,)
{j1s-ens j,,?} c{l,..., r}
m 1S even
- - ( l)m 1
= <0j1 Oj, .

To find an expression for the expectation value for P,
in the case where {ij, ..., i,} is not the entire set of syndrome
elements in the system, we consider the combined processes

Pk, With {ky, oo kgy € {ir, ..., 0y} that have the same
effect on syndrome elements {ir, ... in} as Pk,
%
Pk] ..... kq = 1_[ Pkl ----- kqv]l ----- Jm

As the effects due to processes on the additional syndrome
elements have been absorbed into the combined processes,
the previous derivation of decomposing P, as a product of
even and odd syndrome moments holds the same for decom-
posing P! as even and odd syndrome moments from the
set {i1, ..., in}. We therefore get the result

e = T e

{J1sees S5 eensin}

Writing out the definition of the combined process that flips
all the syndrome elements {iy, ..., i,}

we have derived the full form of Eq. (10):

B L \(=1ynla=(=D)
1_[ (GJI T O']m)

VI Jm}
< [il ~~~~~ in]
<Pil ..... t,,) = s
I—[ <le~,---VJm>
VT Jm}
D i, .-, i}
5 _ \(=1ymlp=-D
1—1 (Ujl : GJ;;1>
(-, Jm}
I 1ct..... in}
Di,..i, — 37— =
2 2 1_[ (1 2p]l vvvv ]m)
{isoes Jm}
D {it, s in}

For reference to the reader, we will write out the explicit
formulas assuming that there are no errors with signatures on
more than two syndrome elements, recovering the formulas
derived in Ref. [23]:

_ 1 1 1 (Jlaj>
Pi=5 750 6ey 2 1—20,@0,)’
(E2a)
11 5, 1 1/2 — (o;
P S VN R VE S IR
2 21_[]755(1 = 2pij) 2 Hj;éi(l — 2pij)

with @ representing addition modulo 2.
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Similarly, assuming no errors with signatures on more than four syndrome elements, we get the explicit formulas

11 [(6i)(6))(6k)(61)(6:G6+)(6:561)(5i6k61)(6;6kG1)
Dijkl = = — = e e s s (E3a)
2 2\ (6i6j)(6i6k){(6i61){G;0k)(5;61){616){(6:6;01b1)
11 ,/(6:){6;)(6k)(6:5;6%) 1
pifk:§_§\4/ ((3—5;(&-f ><~j~§ T—2pm’ (E3b)
i0j)\0i0k)\OjOk 1¢(i,7.k) Pijkl
1 1 [(6:)(6;) 1
Pi=357% (&a] 1—2p;; 1 —2p;; (Ede)
i9j keli,j) puk 1¢{i,j.k) pz/kl
L 1 1 I 30
pi= 5 — 50
202 A\ 2P g 2Pijk 1y iy L 2Piska

Finally, we also numerically validated Eq. (10) on arti-
ficial datasets, where correlated errors triggering up to 12
syndromes exist; see Fig. 12.

APPENDIX F: BIAS IN CYCLE ERROR CALCULATION

We present an example of how not accounting for highly
correlated error signatures can bias the extracted probabilities
of errors with lower-weight signatures. Let us consider three
syndrome elements o, 0, and o3, which are affected by
three independent error processes. The first process flips the
syndrome element oy with probability p; = 3%, the second
flips both syndrome elements o and o, with probability p;, =
2.5%, and the third process flips all syndrome elements with
probability pi»3 = 1%. The expectation values for the corre-
lations between syndrome elements are given in Table III. If
we use Eq. (10) to calculate the error probabilities from the
correlations, we recover the original probabilities p;, pi», and
p123. However, if we use the simplified formula (E3) that does
not account for the highly correlated error process pi»3, we get
erroneous probabilities p; see Table IV. We see that two-way
correlations are overestimated by roughly pj»3, because the
three-way error process flips all pairs of syndromes. However,
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FIG. 12. Error probability as calculated according to Eq. (10) as
a function of the true simulated error probability for 83 random error
channels with signatures on up to 12 nodes. The simulation was done
with 100 000 shots and took about 30 min on a laptop computer.

the single-syndrome-flipping error probabilities are underesti-
mated by pi»3, because the two-way error probabilities that
are effectively subtracted by the denominator in Eq. (E3b)
were overestimated. We see that in some cases (P, and p3),
the extracted probabilities can even appear negative if some
error channels are not accounted for.

APPENDIX G: SIMULATION MODEL

To obtain the simulation data shown in Fig. 3(b), we con-
duct a Clifford simulation using the PECOS [73] package,
where we implement the circuit presented in Appendix H.
Single- and two-qubit depolarizing noise is implemented by
applying a random single- or two-qubit Pauli operator to
the state with probability p. We use a uniform noise model,
where operations on each qubit are subject to the same error
probabilities. We apply single-qubit depolarizing noise dur-
ing each idling step of duration #ip;, with probability pipr, =
(1 — e™™/T) /4, where T = 35 us is approximately the mean
T and T, time of all the qubits. For single-qubit gates, we
apply a single-qubit depolarizing channel with probability
p1g = 0.0009. That is the average of single-qubit gate er-
rors from randomized benchmarking. Similarly, for two-qubit
gates, we apply a two-qubit depolarizing channel with prob-
ability p,q = 0.015, the average gate error from interleaved
randomized benchmarking; see Appendix D. Finally, to model
readout errors, we apply an X gate before each readout with
probability pro = 0.0116, which correszlgonds approximately

to the average two-state readout error 61(10’ see Table II.

TABLE III. Syndrome correlations for the three-node example.

Correlation Equation Num.
(61) (1 =2p))(1 = 2p2)(1 = 2p123) 0.875
(62) (1 =2p)(1 —2p123) 0.931
(63) 1 —2pia 0.980
(6162) 1—2p; 0.940
(62,63) 1 —2pp 0.950
(6163) (I =2p)(1 =2pp) 0.893
(616263) (I =2p)(1 = 2p13) 0.921

013044-18



EXPERIMENTALLY INFORMED DECODING OF ...

PHYSICAL REVIEW RESEARCH 8, 013044 (2026)

TABLE IV. Error probabilities p inferred using Eq. (E3) for the
three-node example.

Inferred

probability Equation Num. Error
4 (p1 = p123)/(1 = 2pin3) 0.020 —0.010
)22 —p13/(1 = 2p13) —0.010 —0.010
D3 —p13/(1 = 2p13) —0.010 —0.010
P12 P12+ P12z — 2p12p13 0.034 0.010
P23 P12 0.010 0.010
P13 P23 0.010 0.010

APPENDIX H: FULL CIRCUIT DIAGRAM

A diagram of an example circuit four-cycle-long logical
state preservation experiment for the |+); state is shown in
Fig. 13. The experimental data presented in this work were
acquired using an equivalent 16-cycle-long circuit, preparing
either |0);, |1)., |+)L, or |—).. During the first stabilizer
measurement cycle, we omit measuring the X-type (Z-type)
stabilizers when preparing an eigenstate of the X (Z)
operator.

APPENDIX I: EXAMPLE ANALYSIS OF VARYING
ERROR RATES

As the simplest example that shows how the changes in the
underlying error rates of the system during the data aquisition
time can lead to apparent correlated errors, we consider the
following system. There are two syndrome elements that in-
dependently flip with some probability. In the first scenario,
let the error probability be constantly p throughout the data-
gathering time. In this case, the syndrome correlations are

(11a)
(11b)

(61) = (62) =1 —2p,
(6162) = (1 —2p)?,

and the error probabilities extracted using Eq. (10) are

o=+ — L [100@2) _ (122)
272\ (o)
11

p1=§—5<01)=p, (12b)
11

=550 =p (120)

In a second scenario, we set the individual error probabili-
ties to zero for the first half of the data gathering and to 2p for
the second half, yielding syndrome correlations

61) = (62) =12+ (1 —dp)/2=1-2p,  (3a)
(3162) = 1/2+ (1 —4p)2/2 = (1 — 2p)* + 4p>. (I3b)

We now find a nonzero probability for an error simultane-
ously flipping the two syndrome elements:

_ 116
PR=27 2\ i)
11 (1—2p)>
B AT T
L 14b
P=3 3T PP (I4b)
_ L1 (&)
P2 = 5 T 3T #Pp (I4c)

In this extreme example, where the errors are fully off for
half of the experiment, the apparent correlated error probabil-
ity is equal to p? in the limit of small p. For a smaller change
in the error rates of ¢, that is, error probabilities (1 — ¢)p for
half of the data gathering time and (1 4+ ¢)p for the second
half, we would find a correlated error probability proportional
to £2p”. Due to the quadratic scaling in both ¢ and p, the effect
is significant only for large changes in the error rates.
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FIG. 13. Circuit diagram for a four-cycle-long logical state preservation experiment for the |+); state. Green boxes denote single-qubit
rotations around ¥, with the filling indicating the rotation angle: Left half filled is — /2, right half filled is 77 /2, and fully filled is 7. Orange
vertical lines indicate virtual 7 rotations around Z, which are implemented by flipping the phase of all following single-qubit gates. Red boxes
indicate readout and pairs of purple boxes connected by a vertical line denote CZ gates.
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