| Home > Publications database > Data-driven machine learning modelling for the manufacturing of the fuel electrode support in solid oxide cells > print |
| 001 | 1054076 | ||
| 005 | 20260210202250.0 | ||
| 024 | 7 | _ | |a 10.1016/j.egyai.2026.100687 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2026-01710 |2 datacite_doi |
| 037 | _ | _ | |a FZJ-2026-01710 |
| 082 | _ | _ | |a 624 |
| 100 | 1 | _ | |a Le-Dinh, Tan |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Data-driven machine learning modelling for the manufacturing of the fuel electrode support in solid oxide cells |
| 260 | _ | _ | |a Amsterdam |c 2026 |b Elsevier ScienceDirect |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1770724840_30069 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a tape casting typically involves a multi-stage process, demanding precise control over tape thicknessand density. However, conventional SOC manufacturing processes are resource-intensive and oftenrely on industry/R&D unpublished knowledge and trial-and-error practices to achieve the targetproperties of the resulting tape. Hence, machine learning (ML) was employed for predicting thethickness and density across three distinct stages of the fabrication process: tape casting, sintering,and NiO-reduction process. Our developed ML models (e.g., Extra Trees and Ridge Regressions)demonstrate exceptional accuracy (R2 > 0.9) for each specific prediction task. Concurrently,experimental data analysis was conducted to elucidate the impact of the manufacturing parameterson the tape properties. Our data-driven ML approach offers a pathway towards achieving precise tapeproperty control and advancing more efficient SOC support manufacturing. |
| 536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Schlenz, Hartmut |0 P:(DE-Juel1)133034 |b 1 |e Corresponding author |
| 700 | 1 | _ | |a Menzler, Norbert H. |0 P:(DE-Juel1)129636 |b 2 |u fzj |
| 700 | 1 | _ | |a Franco, Alejandro A. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 4 |u fzj |
| 773 | _ | _ | |a 10.1016/j.egyai.2026.100687 |g p. 100687 - |0 PERI:(DE-600)3017958-0 |p 100687 - 100699 |t Energy and AI |v 24 |y 2026 |x 2666-5468 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1054076/files/1-s2.0-S2666546826000133-main.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1054076 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)133034 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129636 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)161591 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 0 |
| 914 | 1 | _ | |y 2026 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-06 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:55:10Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:55:10Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-06 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:55:10Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-06 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-06 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IMD-2-20101013 |k IMD-2 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|