001     1054076
005     20260210202250.0
024 7 _ |a 10.1016/j.egyai.2026.100687
|2 doi
024 7 _ |a 10.34734/FZJ-2026-01710
|2 datacite_doi
037 _ _ |a FZJ-2026-01710
082 _ _ |a 624
100 1 _ |a Le-Dinh, Tan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Data-driven machine learning modelling for the manufacturing of the fuel electrode support in solid oxide cells
260 _ _ |a Amsterdam
|c 2026
|b Elsevier ScienceDirect
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770724840_30069
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a tape casting typically involves a multi-stage process, demanding precise control over tape thicknessand density. However, conventional SOC manufacturing processes are resource-intensive and oftenrely on industry/R&D unpublished knowledge and trial-and-error practices to achieve the targetproperties of the resulting tape. Hence, machine learning (ML) was employed for predicting thethickness and density across three distinct stages of the fabrication process: tape casting, sintering,and NiO-reduction process. Our developed ML models (e.g., Extra Trees and Ridge Regressions)demonstrate exceptional accuracy (R2 > 0.9) for each specific prediction task. Concurrently,experimental data analysis was conducted to elucidate the impact of the manufacturing parameterson the tape properties. Our data-driven ML approach offers a pathway towards achieving precise tapeproperty control and advancing more efficient SOC support manufacturing.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schlenz, Hartmut
|0 P:(DE-Juel1)133034
|b 1
|e Corresponding author
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 2
|u fzj
700 1 _ |a Franco, Alejandro A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
|u fzj
773 _ _ |a 10.1016/j.egyai.2026.100687
|g p. 100687 -
|0 PERI:(DE-600)3017958-0
|p 100687 - 100699
|t Energy and AI
|v 24
|y 2026
|x 2666-5468
856 4 _ |u https://juser.fz-juelich.de/record/1054076/files/1-s2.0-S2666546826000133-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1054076
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
914 1 _ |y 2026
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:55:10Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:55:10Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:55:10Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-2-20101013
|k IMD-2
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-2-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21