000010542 001__ 10542
000010542 005__ 20200423202802.0
000010542 0247_ $$2pmid$$apmid:20624981
000010542 0247_ $$2pmc$$apmc:PMC2922126
000010542 0247_ $$2DOI$$a10.1073/pnas.0913177107
000010542 0247_ $$2WOS$$aWOS:000280602800035
000010542 0247_ $$2altmetric$$aaltmetric:522389
000010542 037__ $$aPreJuSER-10542
000010542 041__ $$aeng
000010542 082__ $$a000
000010542 084__ $$2WoS$$aMultidisciplinary Sciences
000010542 1001_ $$0P:(DE-Juel1)129379$$aPieruschka, R.$$b0$$uFZJ
000010542 245__ $$aControl of transpiration by radiation
000010542 260__ $$aWashington, DC$$bAcademy$$c2010
000010542 300__ $$a13372 - 13377
000010542 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010542 3367_ $$2DataCite$$aOutput Types/Journal article
000010542 3367_ $$00$$2EndNote$$aJournal Article
000010542 3367_ $$2BibTeX$$aARTICLE
000010542 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010542 3367_ $$2DRIVER$$aarticle
000010542 440_0 $$05100$$aProceedings of the National Academy of Sciences of the United States of America$$v107$$x0027-8424$$y30
000010542 500__ $$aWe acknowledge Keith Mott for suggesting the use of near infrared light, Keith Mott, Bernard Genty, and Peter Franks for many discussions that helped us form our ideas, and two reviewers who helped us better express them. We thank Denis Klimov for help with light sources and Larry Giles for technical assistance. R. P. was supported by a Marie Curie fellowship (LIFT 041060) during this work.
000010542 520__ $$aThe terrestrial hydrological cycle is strongly influenced by transpiration--water loss through the stomatal pores of leaves. In this report we present studies showing that the energy content of radiation absorbed by the leaf influences stomatal control of transpiration. This observation is at odds with current concepts of how stomata sense and control transpiration, and we suggest an alternative model. Specifically, we argue that the steady-state water potential of the epidermis in the intact leaf is controlled by the difference between the radiation-controlled rate of water vapor production in the leaf interior and the rate of transpiration. Any difference between these two potentially large fluxes is made up by evaporation from (or condensation on) the epidermis, causing its water potential to pivot around this balance point. Previous work established that stomata in isolated epidermal strips respond by opening with increasing (and closing with decreasing) water potential. Thus, stomatal conductance and transpiration rate should increase when there is condensation on (and decrease when there is evaporation from) the epidermis, thus tending to maintain homeostasis of epidermal water potential. We use a model to show that such a mechanism would have control properties similar to those observed with leaves. This hypothesis provides a plausible explanation for the regulation of leaf and canopy transpiration by the radiation load and provides a unique framework for studies of the regulation of stomatal conductance by CO(2) and other factors.
000010542 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000010542 588__ $$aDataset connected to Web of Science, Pubmed
000010542 65320 $$2Author$$aplant physiology
000010542 65320 $$2Author$$astomata
000010542 65320 $$2Author$$amicrometeorology
000010542 650_2 $$2MeSH$$aCarbon Dioxide: metabolism
000010542 650_2 $$2MeSH$$aHelianthus: metabolism
000010542 650_2 $$2MeSH$$aHelianthus: physiology
000010542 650_2 $$2MeSH$$aLight
000010542 650_2 $$2MeSH$$aModels, Biological
000010542 650_2 $$2MeSH$$aNerium: metabolism
000010542 650_2 $$2MeSH$$aNerium: physiology
000010542 650_2 $$2MeSH$$aPhotosynthesis: physiology
000010542 650_2 $$2MeSH$$aPhotosynthesis: radiation effects
000010542 650_2 $$2MeSH$$aPlant Leaves: physiology
000010542 650_2 $$2MeSH$$aPlant Stomata: metabolism
000010542 650_2 $$2MeSH$$aPlant Stomata: physiology
000010542 650_2 $$2MeSH$$aPlant Transpiration: physiology
000010542 650_2 $$2MeSH$$aTrees: metabolism
000010542 650_2 $$2MeSH$$aTrees: physiology
000010542 650_2 $$2MeSH$$aWater: metabolism
000010542 650_2 $$2MeSH$$aXanthium: metabolism
000010542 650_2 $$2MeSH$$aXanthium: physiology
000010542 650_7 $$0124-38-9$$2NLM Chemicals$$aCarbon Dioxide
000010542 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000010542 650_7 $$2WoSType$$aJ
000010542 7001_ $$0P:(DE-Juel1)129333$$aHuber, G.$$b1$$uFZJ
000010542 7001_ $$0P:(DE-HGF)0$$aBerry, J.A.$$b2
000010542 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.0913177107$$gVol. 107, p. 13372 - 13377$$p13372 - 13377$$q107<13372 - 13377$$tProceedings of the National Academy of Sciences of the United States of America$$v107$$x0027-8424$$y2010
000010542 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922126
000010542 8564_ $$uhttps://juser.fz-juelich.de/record/10542/files/FZJ-10542.pdf$$yRestricted$$zPublished final document.
000010542 909CO $$ooai:juser.fz-juelich.de:10542$$pVDB
000010542 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010542 9141_ $$y2010
000010542 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000010542 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000010542 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000010542 970__ $$aVDB:(DE-Juel1)120912
000010542 980__ $$aVDB
000010542 980__ $$aConvertedRecord
000010542 980__ $$ajournal
000010542 980__ $$aI:(DE-Juel1)IBG-2-20101118
000010542 980__ $$aUNRESTRICTED
000010542 981__ $$aI:(DE-Juel1)IBG-2-20101118
000010542 981__ $$aI:(DE-Juel1)ICG-3-20090406