000010542 001__ 10542 000010542 005__ 20200423202802.0 000010542 0247_ $$2pmid$$apmid:20624981 000010542 0247_ $$2pmc$$apmc:PMC2922126 000010542 0247_ $$2DOI$$a10.1073/pnas.0913177107 000010542 0247_ $$2WOS$$aWOS:000280602800035 000010542 0247_ $$2altmetric$$aaltmetric:522389 000010542 037__ $$aPreJuSER-10542 000010542 041__ $$aeng 000010542 082__ $$a000 000010542 084__ $$2WoS$$aMultidisciplinary Sciences 000010542 1001_ $$0P:(DE-Juel1)129379$$aPieruschka, R.$$b0$$uFZJ 000010542 245__ $$aControl of transpiration by radiation 000010542 260__ $$aWashington, DC$$bAcademy$$c2010 000010542 300__ $$a13372 - 13377 000010542 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000010542 3367_ $$2DataCite$$aOutput Types/Journal article 000010542 3367_ $$00$$2EndNote$$aJournal Article 000010542 3367_ $$2BibTeX$$aARTICLE 000010542 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000010542 3367_ $$2DRIVER$$aarticle 000010542 440_0 $$05100$$aProceedings of the National Academy of Sciences of the United States of America$$v107$$x0027-8424$$y30 000010542 500__ $$aWe acknowledge Keith Mott for suggesting the use of near infrared light, Keith Mott, Bernard Genty, and Peter Franks for many discussions that helped us form our ideas, and two reviewers who helped us better express them. We thank Denis Klimov for help with light sources and Larry Giles for technical assistance. R. P. was supported by a Marie Curie fellowship (LIFT 041060) during this work. 000010542 520__ $$aThe terrestrial hydrological cycle is strongly influenced by transpiration--water loss through the stomatal pores of leaves. In this report we present studies showing that the energy content of radiation absorbed by the leaf influences stomatal control of transpiration. This observation is at odds with current concepts of how stomata sense and control transpiration, and we suggest an alternative model. Specifically, we argue that the steady-state water potential of the epidermis in the intact leaf is controlled by the difference between the radiation-controlled rate of water vapor production in the leaf interior and the rate of transpiration. Any difference between these two potentially large fluxes is made up by evaporation from (or condensation on) the epidermis, causing its water potential to pivot around this balance point. Previous work established that stomata in isolated epidermal strips respond by opening with increasing (and closing with decreasing) water potential. Thus, stomatal conductance and transpiration rate should increase when there is condensation on (and decrease when there is evaporation from) the epidermis, thus tending to maintain homeostasis of epidermal water potential. We use a model to show that such a mechanism would have control properties similar to those observed with leaves. This hypothesis provides a plausible explanation for the regulation of leaf and canopy transpiration by the radiation load and provides a unique framework for studies of the regulation of stomatal conductance by CO(2) and other factors. 000010542 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0 000010542 588__ $$aDataset connected to Web of Science, Pubmed 000010542 65320 $$2Author$$aplant physiology 000010542 65320 $$2Author$$astomata 000010542 65320 $$2Author$$amicrometeorology 000010542 650_2 $$2MeSH$$aCarbon Dioxide: metabolism 000010542 650_2 $$2MeSH$$aHelianthus: metabolism 000010542 650_2 $$2MeSH$$aHelianthus: physiology 000010542 650_2 $$2MeSH$$aLight 000010542 650_2 $$2MeSH$$aModels, Biological 000010542 650_2 $$2MeSH$$aNerium: metabolism 000010542 650_2 $$2MeSH$$aNerium: physiology 000010542 650_2 $$2MeSH$$aPhotosynthesis: physiology 000010542 650_2 $$2MeSH$$aPhotosynthesis: radiation effects 000010542 650_2 $$2MeSH$$aPlant Leaves: physiology 000010542 650_2 $$2MeSH$$aPlant Stomata: metabolism 000010542 650_2 $$2MeSH$$aPlant Stomata: physiology 000010542 650_2 $$2MeSH$$aPlant Transpiration: physiology 000010542 650_2 $$2MeSH$$aTrees: metabolism 000010542 650_2 $$2MeSH$$aTrees: physiology 000010542 650_2 $$2MeSH$$aWater: metabolism 000010542 650_2 $$2MeSH$$aXanthium: metabolism 000010542 650_2 $$2MeSH$$aXanthium: physiology 000010542 650_7 $$0124-38-9$$2NLM Chemicals$$aCarbon Dioxide 000010542 650_7 $$07732-18-5$$2NLM Chemicals$$aWater 000010542 650_7 $$2WoSType$$aJ 000010542 7001_ $$0P:(DE-Juel1)129333$$aHuber, G.$$b1$$uFZJ 000010542 7001_ $$0P:(DE-HGF)0$$aBerry, J.A.$$b2 000010542 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.0913177107$$gVol. 107, p. 13372 - 13377$$p13372 - 13377$$q107<13372 - 13377$$tProceedings of the National Academy of Sciences of the United States of America$$v107$$x0027-8424$$y2010 000010542 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922126 000010542 8564_ $$uhttps://juser.fz-juelich.de/record/10542/files/FZJ-10542.pdf$$yRestricted$$zPublished final document. 000010542 909CO $$ooai:juser.fz-juelich.de:10542$$pVDB 000010542 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000010542 9141_ $$y2010 000010542 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0 000010542 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000010542 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1 000010542 970__ $$aVDB:(DE-Juel1)120912 000010542 980__ $$aVDB 000010542 980__ $$aConvertedRecord 000010542 980__ $$ajournal 000010542 980__ $$aI:(DE-Juel1)IBG-2-20101118 000010542 980__ $$aUNRESTRICTED 000010542 981__ $$aI:(DE-Juel1)IBG-2-20101118 000010542 981__ $$aI:(DE-Juel1)ICG-3-20090406