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Dynamics of active swarms at the edge of
disorder
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Many animal groups form structures such as flocks and swarms. However, how can the individual
agents reconcile the simultaneous requirements of local collision avoidance, alignment, and group
cohesion to achieve coherent collective motion? Here, we propose a minimal flocking model, where
each agent is capable of vision-based steering interactions to achieve these (conflicting) goals.
Numerical simulations in two dimensions show that local collision avoidance acts as a source for
emergent noise and induces an order-disorder transition, triggered by the fast response of the flock to
local directional changes. The emergence of large vortices at the critical point hints at a Berezinskii-
Kosterlitz-Thouless-like transition.Deep in theorderedphase, thecohesionacts like a surface tension,
favouring compact flock shapes. The competing interactions lead to pronounced shape and density
fluctuations of the flock. These large fluctuations can be important for a fast response to external cues,
which aids predator evasion and foraging.

The past few decades have seen an increasing interest in collective phe-
nomena and self-organization in non-equilibrium systems. Examples of
self-organization such as “swirling” or “flocking” range across length scales,
frommicro (as seen in ameboid cells)1,2 to macro (such as fish schools, bird
flocks, locust swarms)3–5. Even purely repulsive interactions can lead to
collective motion, for instance, motility-induced phase separation or wall
aggregation of self-propelled particles6–8. At the microscale, hydrodynamic
interactions between constituents can lead to synchronization or collective
motion, as seen inmolecularmotors like cilia andflagella9,10.However,when
equippedwith directional sensory information, such as induced by vision or
chemical gradients, constituents are able to form complex structures such as
flocks and herds or engage in pursuit or escape11,12. The formation of flocks
or herdsmayprove advantageous due to distributed informationprocessing
within the group13, like ensuring higher survival probability in the presence
of predators14,15.

Active Brownian particles (ABPs) have been used as agents to model
several such systems, like bacteria and self-propelled colloids16. These models
can be extended to comprise visual information or aligning interactions,
which leads to emergent structure formation, such as worm-like structures,
vortices, aggregates, etc., depending on their persistence length and vision
angle17–19. Such interactions are often non-reciprocal, i.e. they break Newton’s
principle of action-reaction symmetry. This non-reciprocity can generate
new forms of self-organization11,20,21, novel materials22, and distinctive spa-
tiotemporal patterns23,24. Within lattice models, biologically inspired “vision-
based" interactions can drive unconventional phase transitions25,26, such as
the emergence of true long-range order in the 2D XY model27,28.

For active particleswith alignment interactions between neighbors, the
Vicsekmodel29first showed thepossibility of aflocking (ordering) transition
in two dimensions, prohibited in equilibrium due to the Mermin-Wagner
theorem. The Vicsek model has subsequently been studied extensively to
understand the nature (i.e. order) of the flocking transition, which shows a
complex dependence on model implementation such as particle speed or
boundary conditions30–32. A hydrodynamic theory that explains the transi-
tion in the Vicsek model was subsequently developed by Toner and Tu33.
Studies have also shown that criticality and symmetry breaking in theVicsek
transitionmay be used to understand the scale-free behavior seen in natural
systems such as midge swarms and bird flocks34,35.

Despite the success of the Vicsek model in describing flocking, recent
experiments have shown that the dynamic behavior of flocks, in particular,
the fast and linear propagation of information, may be incompatible with
thepredictionsbasedon theVicsekmodel36. To resolve this issue, the inertial
spin model (ISM) was introduced37, where the information of a turn pro-
pagates linearly in time through the flock. However, the fast information
propagation, in the form of a spin wave in the ISM, relies on the rotational
symmetry of the Hamiltonian. This begs the question: how can non-
reciprocal interactions like vision-based cohesion or collision avoidance—
important interactions that governflocking andherding in animal groups—
be incorporated into the ISM and affect its predictions?

In this work, we propose an augmented version of the ISM, which
incorporates anisotropic andnon-reciprocal vision-based interactions, such
as group cohesion and collision avoidance. While our model shares some
similarities with the Reynolds’ Boid38 and Couzin’s zonal model39, our main
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focus is to study the effect of local collision avoidance, inertia, and swarm
cohesion on the resulting collective behavior. When local-collision avoid-
ance is incorporated into the system, it is found to trigger a transition from
polar order to disorder—suggesting that collision avoidance is a key para-
meter governing flock behavior in the inertial limit. As the system
approaches the disorder transition from the ordered state,
the collective dynamics of the flock changes from ballistic to diffusive,
accompanied by large shape and density fluctuations. Finally, we uncover
that the observed transition belongs to a distinct universality class from the
well-known Vicsek transition, bearing some similarities with the
Berezinskii–Kosterlitz–Thouless (BKT) transition, seen in the (equilibrium)
XY model.

Results
Augmented inertial spin model
Each agent ismodeled as an “intelligent” active Brownian particle (iABP) of
massm, which experiences a propulsion force fp acting along an orientation
vector ei and a frictional interaction with the embedding medium (with
translational friction coefficient γ), so that the particlemotion is determined
by

m€ri ¼ f pei � γ_ri: ð1Þ

We operate in the overdamped limit, i.e small m/γ, so that _ri ’ f pei=γ,
where fp/γ = v0 is the particle speed. The dynamics of the orientation vector
ei ismotivatedby the inertial spinmodel37, where an additional spin variable
is introduced to describe a behavioral inertia of turning. The particle reor-
ientation is thus governed by

_ei ¼ si × ei
χ_si ¼ ei × �η_ei þ ζ i þMi

� � ð2Þ

The spin si associated with each particle i acts to rotate the orientation
vector ei. The spin represents a generalized momentum, connected to the
instantaneous curvature of the particle’s trajectory, χ a generalized
rotational inertia, and η the damping coefficient. The noise term ζi is a
Gaussian random process with zero mean and variance
hζ iðtÞζ jðt0Þi ¼ ð2dÞηTδijδðt � t0Þ, where T is some dimensionless tem-
perature that characterizes the noise in the rotation dynamics and d is the
dimensionality.

All interactions with the neighboring particles are incorporated in the
generalized forceMi, where

Mi ¼Malign þMavoid þMfollow

¼ K
Nk

X
j2VCk

ej �
Ωa

Na

X
j2VCa

expð�r=raÞr̂ij þ
Ωf

Nf

X
j2VCf

expð�r=rf Þr̂ij:

ð3Þ

Here, Mi points in the direction of the agents intended motion. The first
termMalign, incorporates the alignment interactions with strength K, and is
the only term in the original ISM. In addition, agents are capable of vision-
based cohesion and collision avoidance behavior, crucial traits governing
realistic flocking dynamics, which are captured by the terms Mfollow and
Mavoid, respectively. The alignment (‘k’), cohesion (‘f ’) and local avoidance
(‘a’) interactions are normalized by the effective numberNα of agents in the
vision cone VCα, with α ∈{k, f, a} so that the interactions are non-additive.

The agents have three vision cones,VCα, with vision angles ψα and full
interactions rangesRα. Figure 1a shows a schematic of all three interactions,
withRa<Rk<Rf. Thevisionangleψα is half of the opening angle of the vision
cone, as indicated in Fig. 1b. The cohesion and collision-avoidance terms
cause the agent to steer toward or away from regions of high agent density
(� P

j r̂ij) within its vision cone. Additionally, the cohesion and local-
avoidance interactions include exponential decays with ranges rf < Rf and
ra < Ra, which define the length scales for following or avoiding nearby

agents. Note that the overdamped limit (χ/η → 0) of these equations cor-
responds to theVicsekModel (VM). SeeModels andMethods for the full set
of parameter values.

Since the parameter spaceof ourmodel is rather large,we focushere for
simplicity on the case of panoramic view with all vision angles ψα = π.
Additionally, the cohesion maneuverability Ωf decreases with increasing
neighbor density, i.e Ωf ðncÞ ¼ Ωf 0½1þ expð�ðnc � n0ÞÞ��1, where nc are
the number of neighbors in the alignment range Rk. This implies that the
vision-based cohesion only kicks in when the neighbor density is low, i.e. at
the edge of the flock or when agents have not joined the flock, see Fig. 1c
[with a maximum strength ofΩf0]. Consequently, the bulk of the flock can
still sustain the propagation of spin waves, since cohesion and collision-
avoidance interactions both lacking rotational symmetry exert only aminor
influence. Even with a full vision angle (ψα = π), cohesion and avoidance
interactions are non-reciprocal due to their density dependence and non-
additive character: particles in the bulk experience different cohesion
strengths from those near the flock edges. In addition, already at the two-
particle level, the cohesion and avoidance interactions are non-reciprocal, as
evident from Eqs. (2) and (3) under exchange of i and j.

For surface-bound systems, two-dimensional polar coordinates can be
employed, which simplifies the equations of motion, see Models and
Methods. We vary the damping coefficient η to switch from the under-
damped to the over-damped regime (χ = 1). We also study the effect of
changing the maneuverability Ωa of avoidance steering.

Flocking transition—emergent noise
For active systems such as bird flocks and fish schools, directional reor-
ientation is the key mechanism governing local collision avoidance, and is
more relevant than hard core repulsion. As the strength Ωa of the local
avoidance is decreased, the particles exhibit aflocking transition—similar to
the transition fromdisorder to polar order in theVicsekmodel.Weperform
simulations to explore the effect of K, Ωa, and η on the flocking transition.
All data for the order parameter (polarization) are found to fall on an
universal scaling curve with Θ ¼ Ωa=K

0:85 ffiffiffi
η

p
as the scaling variable. The

order-disorder transition is then located atΘ = 1, see Fig. 1d. In the under-
damped regime (i.e., at lowη), the agents becomehighly sensitive to changes
in their orientation, such that even a small increase of Ωa can trigger the
transition to a disordered state [for Θ = 1,Ωa ∝ η0.5]. This suggests that, in
under-damped systems, local avoidance may function as an emergent
source of noise. Here, the effect of external/random noise [ζi in Eq. (2)] is
likely subdominant, and even a low intensity of local avoidance can initiate
the disorder transition. As the systemmoves into the over-damped regime,
the tolerance to directional changes caused by local avoidance increases.
Lastly, we note that for larger alignment maneuverability K, the agents
require largerΩa to enter the disordered state, i.e. atΘ = 1,Ωa ∝ K, further
hinting that local avoidance serves as a source of noise in the system, and
thereby induces aVicsek-likeflocking transition (which also depends on the
ratio of noise to alignment strength). However, a closer examination reveals
that the nature of the transition is in-fact different from the Vicsek case, as
confirmed by our finite-size scaling analysis.

We also study the fluctuations χp of the order parameter at the tran-
sition, and find that the fluctuations peak at the transition, see Fig. 1e. This
alongwith the smooth variation of the polar order parameter is suggestive of
a second-order transition. Note that due to the cohesive interactions, the
region Θ ≳ 1.0, where the flock is unpolarized, still exhibits swarming
behavior similar to that observed in insect swarms. Slightly below (Θ≲ 1.0)
the transition, where the polarization is weak, e.g. P≲ 0.5, the system shows
giant shape fluctuations and a range of collective modes.

Flock shape and density fluctuations nearing the disorder
transition
The presence of vision-based cohesion leads to strong shape fluctuations
near the order-disorder transition. The squared radius of gyration R2

g
(computed from the gyration tensor, see Supplementary Note 2) provides a
suitablemeasure for characterizing theflock size and shape. Figure 2c shows
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the average squared radius of gyration hR2
gi as the system crosses the

transition. In the ordered phase Θ < 1, we find hR2
gi ’ R2

g;0, where R
2
g;0 ¼

NR2
a=4 is the squared radius of a compact, perfectly circular arrangement of

particles with an average separation Ra. This implies that the flock shape is
compact with few deviations from a circular shape for Θ < 1. At the tran-
sition point, hR2

gi almost doubles, indicating significant increase in effective
flock size due to elongation. The fluctuations (in time) of the squared radius

of gyration
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhR4

git � hR2
gi2t Þ=R

4
g;0

q
increase sharply at Θ = 1 (see Supple-

mentary Fig. S2), reflecting strong dynamical variations in shape near the
transition. Beyond the transition at Θ > 1, hR2

gi drops significantly as the
flock breaks into several small disordered clusters. In addition, the flock also
exhibits large density fluctuations, as indicated by snapshots of the density
map ρ(r, t) at three different time stamps, in Fig. 2d. Flock snapshots and
videos reveal the mechanism behind the shape and density fluctuations.
Sub-regionswithin the flock become transiently polarized, causing the flock
to expand; this expansion reduces density, which disrupts the polarization
and “turns on" the vision-based cohesion. Agents at the edges then reorient
toward regions of higher density, leading to flock contraction and a sub-
sequent density increase. This, in turn, generates localized polarization and
flock expansion, and the cycle repeats. Thus, a positive feedback loop
between local density, alignment, and cohesion behavior results in large
fluctuations in flock shape, as seen in Supplementary Movie M1.

To further characterize the density fluctuations, we analyze the
dynamic structure factor S(q, ω) for varying Θ (see Supplementary
Note 3). The shape of S(q, ω) provides insight into the types of density
fluctuations, if any, across different length scales. For reference, we first
examine S(q, ω) in the (polar) flocking phase (small Θ) and find that it
exhibits a distinct peak at ω/q = v0, see Supplementary Fig. S3. This
reflects the “trivial” collective motion of the flock and the agents across
the simulation box, appearing as a propagating excitation (note that

S(q, ω) is calculated in the laboratory frame). As Θ increases, a second
propagating excitation emerges at small q, distinct from the self-
propulsion of the agents (see Fig. 2a). Supplementary Movie M2 shows
the time evolution of the density map for Θ = 0.81, and reveals that this
new excitation corresponds to density fluctuations arising from a
“breathing mode” of the flock. In other words, this mode arises from the
periodic expansion and contraction of the flock, driven by the interplay
between local avoidance and cohesion behavior. As the “breathing-
mode” fluctuations move with the flock, they lead to an effective
reduction in the velocity of the “flocking” branch (i.e. trivial motion of
the flock in the lab frame). As the velocity of the breathing mode
increases (for increasing Θ), the flock’s overall persistence length
decreases, resulting in a decrease of the velocity of the flocking branch.
Additionally, the “breathing mode” density fluctuations appear less
prominent along the flocking direction, as seen in Supplementary
Movie M2. Note that from S(q, ω) we can only infer the effective speeds
of these density fluctuations, as they may overlap with each other. At
intermediate q, both excitations coexist, but the breathing mode persists
to smaller q values. The dispersion in Fig. 2a appears discontinuous
because only the most prominent peak in S(q, ω) is displayed, although
both peaks (i.e. excitations corresponding to the breathing or flocking
mode) may exist simultaneously for the intermediate q values. For yet
largerΘ, a central peak emerges at small q, with a width scaling as ω ∝ q2,
indicating the presence of long-wavelength diffusive density fluctuations,
see Fig. 2b. The shape of S(q, ω) in this regime takes a Lorentzian form,

Sðq;ωÞ
Sðq; 0Þ ¼

Γ2q
Γ2q þ ω2

; ð4Þ

where Γq = Dρq
2. For Θ = 1.04, the dynamics of the long-wavelength

fluctuations is governed by the collective diffusion coefficient Dρ ≃ 0.25Dt,

Fig. 1 | Model schematic and phase transition. a Schematics of the three different
steering interactions between the agents—alignment, collision-avoidance and
cohesion. The different colors represent the interaction ranges for local-avoidance
Ra (red), alignment Rk (green), and cohesion Rf (yellow) interactions. b Schematic of
the vision cone of agent i (black) with vision angleψ (half-angle of the cone opening).
The red agent j is visible to agent i, whereas the gray agent is outside the cone and thus
undetected [also in (a)]. In (a) and (b), the arrows indicate the propulsion direction
of the agents. c Density-dependent cohesion behavior, where agents with no
neighbors (blue, Ωf/Ωf0 ≃ 1) have a large cohesion maneuverability, while agents
surroundedwith particles (yellow,Ωf/Ωf0≃ 0) have a low cohesionmaneuverability.

The smaller clusters (left) are formed at the start of the simulation when agents steer
to find other agents. At the end of the simulation (right), a single large cluster with all
agents is formed. d Mean polarization as a function of the scaled variable
Θ ¼ Ωa=K

0:85 ffiffiffi
η

p
, with data collapse for various parameter sets, and disorder

transition at Θ = 1. e Susceptibility χp as a function of the scaling variable Θ, with a
peak at the order-disorder transition. See Supplementary Note 1 for definition of
polarization and susceptibility. In (d, e), N = 400. For simulation snapshots across
the different Θ values, see Supplementary Fig. S1. The source data for (d, e) are
provided in the Supplementary Data file.
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where Dt is the single particle diffusivity [see inset Fig. 2b]. At Θ ≃ 1.0, all
threemodes of density fluctuations coexist, resulting in large fluctuations in
flock shape [peak in Fig. 3c].

Flock shape in the polar ordered phase
Far from the transition in the ordered phase, vision-based cohesion
dictates the final shape of the flock, which remains largely stable over
time but exhibits shape fluctuations across an ensemble of simulations
with different initial configurations. To study this, we perform simula-
tions of model in the Vicesk limit, deep in the ordered phase (where a
high local avoidance can be maintained without triggering the disorder
transition), and start increasing the (maximum) “cohesion" maneuver-
ability Ωf0 (see Models and Methods), for a fixed K. Data are averaged
over 100 simulation runs for each Ωf0, and the flock shape after 1000
relaxation time-steps from a random initial arrangement is considered.
We measure the average excess boundary length Δl/Ra = (〈lb〉− l0)/Ra of
the flock, where l0 is the length of the flock boundary for a disk-like
arrangement (i.e., minimum boundary configuration) and Ra is the range
of the avoidance interaction (also see Supplementary Fig. S4). Results in
Fig. 2e show that two distinct regimes can be identified, characterized by
power-law decays Δl=Ra � Ω�1=4

f 0 and Δl=Ra � Ω�1
f 0 for small and large

Ωf0, respectively. At low Ωf0, the flock shape is highly branched, and
remains nearly frozen once all agents have formed the flock. However,
with increasing Ωf0, the final flock shape becomes increasingly circular.
In the regime of Ωf0/K ≥ 0.3, the fluctuations of the flock shape occur
around a circular disk, and can therefore be rationalized as arising from

an effective line tension. To determine the relation between Ωf0 and line
tension, we consider the Monge parmaterization of the flock boundary at
a point x as a function h(x), representing the height of the flock boundary
above a reference line. Any fluctuations of this boundary incur an energy
cost given by

E ¼
Z

dx σeff ð∇hðxÞÞ2 ð5Þ

where σeff is an effective tension. Following standard analysis formembrane
undulations40 (see Supplementary Note 4) yields

hlbi ¼ l0 þ
Teffπ

2σeffRa
; ð6Þ

where l0 ¼ 2πRa

ffiffiffiffi
N

p
is the length of the flock boundary for a perfectly

circular flock made of N particles maintaining an average separation Ra.
Thus, the excess flock boundary decays as σ�1

eff in the small-gradient
approximation, so that the correspondenceΩf0 ~ σeff can be identified based
on the results of our simulationdata in Fig. 2e, i.e. the “cohesion” interaction
indeed generates an effective line tension. When Ωf0 is small, the effective
tension is too small to induce significant rearrangements, and the flock
shapes are “frozen”. We see here some analogy to diffusion-limited
aggregation (DLA)with tension, where also highly branched configurations
are observed for small line tension41. Qualitatively similar behavior is also
observable in large animal systems; for instance, fish schools tend to form

a b c

d e

Fig. 2 | Dynamic structure factor, radius of gyration, and flock perimeter length.
aDispersion relation of the propagating excitations (extracted from the peaks in the
dynamic structure factor S(q, ω)) for various Θ, with Θ increasing from top (orange
circles) to bottom (blue circles). Note that the dispersion is not discontinuous: two
distinct branches are present and follow approximately linear trends over a broad
range of wave vectors q. The apparent discontinuity arises because the peak-
detection algorithm identifies only the most prominent peaks (even though both
excitations exist for intermediate q, see Supplementary Fig. S3). Inset: velocity of the
density fluctuations extracted by fitting ω = vρq, revealing two branches of flocking
(blue) and breathing (orange) modes. b Dynamic structure factor S(q, ω) exhibits a
Lorentzian shape for 0.5≲ q≲ 1.5 atΘ = 1.04, which indicates the diffusive nature of
large-scale density fluctuations in thisΘ regime. The different colors indicate S(q,ω)
for different q values. Inset: growth of the width Γq = Dρq

2 of the Lorentzian, which
implies a collective diffusion coefficient Dρ = 0.25Dt of the particles (Dt is the single
particle diffusivity at Θ = 1.04). In (a, b), N = 6000, K = 80, and η = 1. c Average
squared radius of gyration hR2

gi of the clusters, as the system crosses the order-

disorder transition. The data is normalized by R2
g;0 ¼ NR2

a=4, which is the squared
radius of gyration for a perfectly circular arrangement of particles with an average
separation ofRa. ForΘ < 1 all agents are in a single (nearly-circular) cluster, while for
Θ > 1, the system breaks into smaller clusters causing a reduction in the average
cluster size, i.e., hR2

g i. At the transition point, significant fluctuations in shape and
density result in cluster elongation, giving rise to a peak in hR2

g i (here N = 400).
d Flock snapshots showing ρ(r, t) as time progresses (left to right). Here, there are
large-scale density fluctuations propagating in the system (marked in yellow), with
parameters N = 6000, η = 1, K = 80, and Θ = 0.94. e Average excess flock perimeter
length Δl as a function of the scaled cohesion interaction strength eΩf 0 ¼ Ωf 0=K in
the deeply ordered case for the Vicsek limit [see Eq. (13)]. Two distinct power-law
regimes are observed, characterized by exponents eΩ�1=4

f 0 (branched shapes, upper
snapshot) and eΩ�1

f 0 (compact shapes, lower snapshot). In the regime eΩ�1
f 0 , the

cohesion interactions can be interpreted as generating an effective line tension,
leading to largely circular shapes. The source data for (a–c, e) are provided in the
Supplementary Data file.
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spherical shapes as individuals aim for the center to reduce predation risk
(thushave largeΩf0),while birdflocks,whichexhibit lower cohesion, tend to
be more elongated and have more fuzzy boundaries.

Mean squared displacement
The combined effect of cohesion and alignment leads to interesting col-
lective behavior near the flocking transition. In the under-damped regime,
the flock is highly sensitive to directional changes triggered by individual
agents. This implies that as the critical point is approached from the
polarized regime (P > 0.8), the flock experiences rapid changes in the
direction of motion. The flock remains cohesive as a whole, while the
underdamped dynamics enable a collective response to local perturbations
—turns triggered by individual agents engaging in collision avoidance
maneuvers. Effectively this implies that the long-time dynamics of the flock
changes as local-avoidance is increased. The mean squared displacement
(MSD) of individual particles is displayed in Fig. 3a for different strengths
Ωa of local avoidance [see also Supplementary Movies M3, M4], as well as
the orientational auto-correlation function C(t) in Fig. 3b. As Θ increases,
agents in the flock switch from ballistic to diffusive motion. This is also
accompanied by a large decrease in the persistence length ξp of the flock,
resulting in a fast decay ofCðtÞ � expð�t=τÞ, with relaxation time τ= v0/ξp.

TheMSDexponentsα and the persistence lengths ξp for the differentΘ
are extracted from these curves, and displayed in Fig. 3c. In the polarized
regime Θ < 1, the agents exhibit ballistic and super-diffusive behavior,
depending on the value of Θ. Nearing the transition at Θ = 1.0, the flock
switches to diffusive motion and the persistence length ξp decreases rapidly
(almost exponentially) withΘ, implying rapid changes in the flock heading
direction, see Fig. 3d.Despite large changes in the heading, theflock remains
intact due to the strong cohesive interactions [see Supplementary
MovieM4]. Note that behavior of the flock is completely different from that
of individual particles, as indicated by theMSD of non-interacting particles
in Fig. 3, which emphases the truly collective nature of the dynamics.
Additionally,wefind that there is also a regimeof sub-diffusive behavior just
before the transition at Θ ≃ 1, characterized by negative velocity auto-
correlations (see Supplementary Fig. S5) and an exponent α< 1. This occurs
because only part of the flock polarizes, while other regions either due to
cohesion or opposing polarity exert competing forces on it. As a result,
different regions of the flock become polarized in opposite directions,
effectively pulling against each other. This mutual opposition leads to
negative velocity auto-correlations and a sub-diffusive behavior of thewhole
flock42. These findings suggest that, in the under-damped regime, noise,
either in the form of local avoidance [Ωa] or external [ζi], allows the system
to explore diverse collective transport regimes, including ballistic, super-
diffusive, diffusive, and sub-diffusive motion. Our results are valid within

the timewindow used to calculate the exponents, 500 < t/t0 < 1000, where t0
is the time for an agent to traverse the inter-particle separation Ra (corre-
sponding to roughly 50L, with flock size L ¼ ffiffiffiffi

N
p

). At longer times, noise
dominates and the system no longer exhibits ballistic motion. Although
transient, this “short-time" behavior is highly relevant, as it corresponds to
motion over several flock lengths.

Nature of the disorder transition—finite-size scaling analysis
We have shown that collision avoidance triggers a flocking transition,
suggesting a connection between local avoidance and emergent noise.What
is the nature of this flocking transition? In the language of statistical physics,
this can be addressed by analyzing the critical exponents, which, irrespective
of microscopic details, determine the universality class of the transition. To
do this, we performa standardfinite-size scaling analysis.Note that, a priori,
it is not obvious that (equilibrium) scaling relations can be applied here.
Nevertheless, this approach has been used in several other (non-equili-
brium) studies29,34,35,43, where it was found to work well. Following the same
rationale, we apply finite-size scaling here. We fix K and η, and varyΩa for
different system sizes N to trigger the order-disorder transition. The mean
polarization 〈P〉 is displayed in Fig. 4a for different system sizes, indicating a
shift of the critical point toward lower Ωa as N increases. However, the
polarization remains continuous up to the largest system size, N = 48,000,
considered, which suggests that the nature of the transition is likely second-
order. Figure 4b shows the susceptibility χp as a function of Ωa, which
develops a peak at the transition point. Notice that the susceptibility curves
collapse for larger Ωa, while they are shifted near the transition, P ≃ 0.5,
indicating strong finite-size effects, implying scale-free behavior.

Under the assumption that the transition is of second order, the cor-
relation length is expected to diverge approaching the critical point Ωa,c as
ξ = ∣Ωa − Ωa,c∣−ν. However, for a finite system, the correlation length is
bounded by the system size L ¼ ffiffiffiffi

N
p

, and the critical point shifts with
system size as

Ωa;c �Ωa;cðLÞ � L�1=ν ð7Þ

where Ωa,c is the critical point in the thermodynamic limit (N → ∞), and
Ωa,c(L) is itsfinite-size proxy. In order todetermine ν,Ωa,cmustbeknownor
estimated. One way to do this is by analyzing the crossings of the Binder
cumulant for differentN; however, in our system, no such crossingdevelops,
see SupplementaryFig. S8.This forces us toperforma three-parameterfit, as
shown in Fig. 4f. The best fit reveals the estimates ν ≃ 3 and Ωa,c/K ≃ 0.35.
However, given the error bars in our estimate, we find that the fit is
degenerate, i.e., for allΩa,c/K < 0.35, we can find an exponent ν > 3 that fits
the data well [see Supplementary Fig. S6 for coefficient of determination R2

a b c d

Fig. 3 | Mean-squared-displacement and orientational auto-correlation. aMean-
squared-displacement (MSD) and b orientational auto-correlation C(t) of particles
for different Θ values approaching the disorder transition. The dashed-line corre-
sponds to theMSD and C(t) of a non-interacting particle. Time is measured in units
of t0 = Ra/v0, the time taken to traverse the inter-particle separation Ra (with flock
size L ’ ffiffiffiffi

N
p

Ra ¼ 20Ra , for N = 400). cMSD exponent α and persistence length ξp,
illustrating the transition from ballistic to diffusive behavior, which is accompanied
by a sharp reduction in persistence length. The exponentsα are computed in the time

window t/t0 ∈ (500, 1000). The persistence length ξp characterizes the exponential
decay ofC(t), where we assumeCðtÞ � expð�t=τÞ, and estimate τ from a linear fit in
the semi-log plot in the range 0.1 < C(t) < 1. Error bars (here smaller than symbols)
are derived from the covariance matrix of the fitted parameters. d Simulation
snapshot illustrating the diffusive motion of the flock driven by repeated directional
changes [also see SupplementaryMovieM4]. The circles marks the center of mass of
the flock as time progresses (light-to-dark blue). Here N = 400, K = 40, and η = 0.5.
The source data for (a–c) are provided in the Supplementary Data file.
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values]. The exponent γ/ν can be estimated by examining the growth of the
peak of the susceptibility χpeak with system size L as χpeak ~ Lγ/ν. Data in
Fig. 4c yields γ/ν ≃ 1.9.

The apparent degeneracy in the exponent ν may be resolved by
considering the scaling of polarization and susceptibility. To do this, we
assume the hyper-scaling relation to determine β = (νd − γ)/2, and then
perform the scaling. For the polarization and susceptibility, we expect the
scaling form

hPiLβ=ν ¼ Φ½L1=νðΩa �Ωa;cÞ=Ωa;c�;
hχpiL�γ=ν ¼ Ψ½L1=νðΩa �Ωa;cÞ=Ωa;c�:

ð8Þ

Using the best fit parameters ν ≃ 3 and Ωa,c/K ≃ 0.35, with γ/ν = 1.9 and
β ≃ 0.15, results in a good data collapse (see Fig. 4d, e). However, the
examination of scaling for the degenerate sets ofΩa,c and ν reveals that the
data scales well for all fits of Ωa,c and ν, down to Ωa,c/K = 0 (see Supple-
mentary Note 5). Thus, scaling does not resolve the degeneracy observed in
the fit. Additionally, we find good scaling only for large exponents, ν> 3 (see
Supplementary Fig. S9). We note that, although the Vicsek model’s criti-
cality is still debated32, even studies that classify it as a second-order
transition report ν≃ 1.6 and β≃ 0.4529,43, clearly significantly different from
what we observe.

Lastly, we also examine the Fourier-space equal-time correlation of the
velocity fluctuations,

CðkÞ ¼
XN
i;j

1
N
δv̂i � δv̂j exp½ik � ðri � rjÞ� ð9Þ

where δv̂i ¼ δvi½N�1P
kδvk � δvk�

�1=2 is the normalized dimensionless
velocity fluctuation, with δvi = vi−N−1∑kvk. The peakCmaxðkmaxÞ provides
an estimate for the correlation length ξ via ξ ¼ 2π=kmax.

Figure 5a displaysC(k) for different system sizes at the transition point
Ωa,c(L),which indicates that the correlation length shifts to larger valuesasN
increases. Specifically, wefind that the correlation length grows linearlywith
system size, ξ~L (see inset of Fig. 5a), indicating that the system is scale-free.
This aligns with the finite-size effects observed in the susceptibility curves in
Fig. 4b. Note that the system remains scale-free far from the critical point in
the ordered phase due to the broken rotational symmetry and the associated
Goldstone modes. We find that scale-free behavior emerges already at very
low polarization values, P ≃ 0.3, where no Goldstone mode is present.

Given the close connection of the ISM to the (passive) XY model, the
large and degenerate exponent ν measured from the finite-size scaling
analysis, and scale-free behavior in the weakly ordered phase (where
P ≃ 0.3), it is worthwhile to consider a Berezinskii–Kosterlitz–Thouless
(BKT)-type transition, where the correlation length diverges exponentially,
leading to a logarithmic decay of Ωa,c(L) with L. For a BKT-like transition,
the scaled correlation length ξ/L as a function of b=

ffiffiffiffi
tL

p
(with a non-

universal constant b), where tL ¼ ðΩa �Ωa;cÞ=Ωa;c

� �ðlog L=L0Þ2, gives a
good data collapse44,45. This is exactly what we observe in our data, see
Fig. 5b. Here, we estimate Ωa,c/K ≃ 0.34 (see Supplementary Fig. S7) by
fitting the form46

Ωa;cðLÞ ¼ Ωa;c þ A=ðlog LÞ2 þ B=ðlog LÞ3: ð10Þ

Moreover, close to the transition, we also observe the formation of several
large (unstable) vortices in the flock [see Fig. 5e and Supplementary
Movie M5], further emphasizing the connection to the BKT transition.
The instability of these vortices is due to the non-equilibrium nature of

a b c

d e f

Fig. 4 | Finite-size scaling. a Average polarizationhPi and b susceptibility χp as a
function of the avoidance interaction strength Ωa for different system sizes N. The
transition is continuous, with a peak in susceptibility at the transition point, sug-
gestive of a second-order transition. cThemaximumsusceptibility χmax as a function
of different system sizes L ¼ ffiffiffiffi

N
p

gives the exponent γ/ν = 1.9. d Scaled polarization
and e susceptibility curves, using the values ofΩa,c, ν, and γ estimated from the finite-
size scaling analysis, with β determined from the hyper-scaling relation. The scaling
improves for larger system sizes as expected; however, there is a degeneracy in this
scaling (see Supplementary Note 5 and Supplementary Figs. S6, S9 for details). fThe
shift of the critical point Ωa,c(L) for different system sizes L, here we fit the form

Ωa,c(L) = Ωa,c + cL1/ν. For the given error bars in the estimates of Ωa,c(L), the fit is
degenerate forΩa,c/K > 0.35 and ν > 3.0 as the critical point is not a priori known due
to non-crossing Binder cumulants (Supplementary Fig. S8). The best fit, when errors
are disregarded, is obtained forΩa,c/K=0.35 and ν=3, indicating thatwhile the exact
exponent remains uncertain, it is sufficiently distinct from the Vicsek universality
class. For all panels, the data were obtained with K = 80 and η = 1. In the flocking
regime and near the transition, hR2

g i � N , so the approximation L ’ ffiffiffiffi
N

p
holds as

cohesion causes the agents to aggregate into a single large cluster. The source data for
(a–f) are provided in the Supplementary Data file.
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the system. In the 2D XY model, there is no true symmetry breaking due
to the Mermin–Wagner theorem. However, it is well known that active
systems do not follow this theorem33. Thus, while the ordered state must
still be a result of symmetry breaking, we propose that the transition from
the disordered to the ordered phase may be governed by a BKT-like
mechanism. It is possible that a pseudo-long-range order first emerges
through a BKT-like-transition, which, upon further reduction of local-
avoidance (emergent noise), gives rise to a flocking state with global
ordering. Note that the inertial nature of the system alone does not lead
to a new universality class (when looking at the static properties of the
system)47. Most likely, it is the combination of behavioral inertia (which
allows for spin waves), the correlated nature of the emergent noise
generated by the avoidance interaction, the cohesion of the swarm
(which limits the “convection” of particles), and the system’s
dimensionality that contribute to altering the nature of the transition.

Discussion
Our study demonstrates that local avoidance-steering interactions in active
matter systems can induce a new type of order-disorder transition. This
transition is governed by the magnitude of local avoidance, Ωa, with its
effects varying across under-damped and over-damped regimes. In the
under-damped regime, smallΩa is sufficient to trigger disorder, while in the
over-damped regime, the system is more tolerant to local avoidance. Our
findings suggest that local avoidance acts as an emergent source of noise for
underdamped flocks.

Additionally, we find that fluctuations play a critical role near the
transition, with the flock exhibiting significant changes in shape and
density. By considering the dynamic structure factor, we identify three
types of excitations in the system. There are two propagating modes, a
“flocking” mode due to the self-propulsion of the particles, and a
“breathing mode” due to the expansion and contractions driven by the
feedback loop between local density, alignment, and cohesive behavior.
There is also a diffusive mode, due to the collective diffusion of particles
as the disordered state is approached. At the order-disorder transition, all
three modes coexist, which explains the large shape fluctuations. When
looking at the ordered phase in the Vicsek (overdamped) limit, we find
that the “cohesion-related” steering generates an effective line tension,
driving the system toward circular shapes.

The standard finite-size scaling analysis for second-order phase
transition provides values for the critical exponents, in particular for the
correlation length exponent ν ≳ 3, much larger than for the Vicsek

model in two dimensions (ν ≃ 1.6). This clearly shows that the tran-
sitions in augmented-ISM and Vicsek models belong to different uni-
versality classes. The altered nature of the transition likely arises from
the interplay of behavioral inertia, correlated avoidance-induced noise,
swarm cohesion, and system dimensionality. A more detailed study is
required to pinpoint which of these effects plays the dominant role. The
presence of vortices near the transition, exponential scaling of the
correlation length, and the development of scale-free correlations
already in the weakly ordered phase indicates a possible BKT-like
transition.

The system exhibits scale-free behavior as it approaches criticality, a
crucial aspect seen in active systems such as bird flocks and midge
swarms. Furthermore, we observe large changes in the flock morphology
and dynamics as the system approaches the disorder transition. Addi-
tionally, local avoidance steering can act as a control parameter, which
alters the collective motion dynamics, enabling access to a full spectrum
of collective modes: ballistic, super-diffusive, diffusive, and sub-diffusive.
Such transient shifts in motion, large shape and density fluctuations, as
well as the large susceptibility near a critical point, can be very advan-
tageous in biological contexts, for instance to facilitate fast reactions to
external perturbations, ward off predators, or aid in predator evasion or
foraging.

Methods
The augmented inertial spin model is defined by Eqs. (1)–(3) in Section 2.
Here, we provide some additional details of the model definition, specify
our parameter selection, and consider the limiting case of overdamped
systems.

The agents have three vision cones, VCk, VCf, and VCa for the
alignment, cohesion and local avoidance interactions, with vision angles
ψk, ψf and ψa, respectively. For an agent i, the vision cone VCα is defined
by

VCα ¼ jj rijjrijj
� ei ≥ cosψα and jrijj <Rα

( )
ð11Þ

where α = k, a, f for the alignment, avoidance and cohesion interactions,
respectively, andRαdefines the rangeof the interaction. The vision angleψ is
half of the opening angle of the vision cone, as seen in Fig. 1b. Note that for
vision-based cohesion and avoidance interactions, we include an

cba

Fig. 5 | Correlation function, correlation length, and vortex formation.
a Correlation function C(k) (in Fourier space) of the velocity fluctuations at the
transition 〈P〉 ≃ 0.5 for different system sizes. The correlation function peaks at the
vector k = 2π/ξ, giving the correlation length ξ. The inset shows ξ ~ L, indicating that
the system is scale-free at the transition, consistent with the apparently continuous
nature of the transition. b Scaling of the correlation length ξ, assuming an expo-
nential growth near the critical point of the form ξ � exp½1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωa �Ωa;c

p �. Here

tL ¼ ðΩa �Ωa;cÞ=Ωa;c

h i
ðlog L=L0Þ2, with L0 = Ra = 1. For (a) and (b), K = 80 and

η = 1. cCloseup of the conformation of particle orientations showing the formation
of vortices close to the transition point, with N = 48,000, K = 80, η = 1 and Ωa,c/
K = 0.46 [also see Supplementary Movie M5]. The inset shows the color corre-
sponding to the polar angle of the propulsion direction. The source data for (a, b) are
provided in the Supplementary Data file.
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exponential factor that prioritizes “following” or avoiding closer agents,
respectively. The normalization factors Nf ¼

P
j2VCf

expð�r=rf Þ,
Na ¼

P
j2VCa

expð�r=raÞ, and Nk ¼
P

j2VCk
, measure the effective

number of agents in the vision cone, so that the interactions are non-
additive. Since our parameter space is rather large, for simplicity, all vision
angles are set to ψα = π.

For surface-bound systems, two-dimensional polar coordinates can be
employed, with ei ¼ ðcos θ; sin θÞ, so that the equations of motions reduce
to

_θ ¼ si

χ_si ¼ ζ i � ηsi þ
K
Nk

X
j2VCk

sinðθj � θiÞ

� Ωa

Na

X
j2VCa

expð�r=raÞ sinðϕij � θiÞ

þ Ωf

Nf

X
j2VCf

expð�r=rf Þ sinðϕij � θiÞ

ð12Þ

where ϕij is the polar angle of the vector rij.
The local avoidance acts in the range Ra, and sets the first neighbor

shell of particles, so that the agents attempt to maintain a distance of Ra
between each other, where r̂ij is the unit connecting particle j and i. We
set Ra = 1, so that all lengths are measured in units of Ra, the decay range
ra = Ra/3, and Ωa > 0, which implies that the agent wants to turn “away”
from the neighbor direction r̂ij. The alignment zone is Rk = 2Ra so that
the agents attempt to align with the first two neighbor shells.
The cohesion interactions act in the range Rf = 6Ra, with a decay range
rf = Rf /3, and Ωf > 0, i.e. agents reorient towards regions of high den-
sity [see Mfollow in Fig. 1a]. However, the cohesion interactions are
“switched off’ in bulk, implemented by a sigmoid function
Ωf ðncÞ ¼ Ωf 0½1þ expð�ðnc � n0ÞÞ��1, where nc is the number of
neighbors in its alignment zone and n0 is a constant. For a choice of
n0 = 8 (in 2D and for Ra = 1), this implies that the vision-based cohesion
only kicks in when the neighbor density is low, i.e. at the edge of the flock
or when agents have not joined the flock, see Fig. 1c. The reason for such
a choice is that once an agent is surrounded by other agents, there is no
incentive to “follow” anymore as it has locally maximized the number of
neighbors. Moreover, the presence of the cohesion interaction in the bulk
—which is anisotropic—would prevent the propagation of the spin wave
generated via the alignment interactions, whereas our implementation
ensures that the spin waves are allowed to propagate through the flock.
We set Ωf0 = K, so that the agents with no neighbors have an equal
tendency to align and follow. Lastly, we set χ = 1, v0 = 0.5, and vary η to
switch from the under-damped to the over-damped regime.

The overdamped limit (χ/η→ 0) of the Eqs. (2) and (3) corresponds to
the Vicsek Model (VM) with

η _ei ¼ ei ×Γi þ
K
Nk

X
j2VCk

ei × ðej × eiÞ

� Ωa

Na

X
j2VCa

expð�r=raÞ ei × ðr̂ij × eiÞ

þ Ωf

Nf

X
j2VCf

expð�r=rf Þ ei × ðr̂ij × eiÞ

ð13Þ

where r̂ij ¼ ðri � rjÞ=jri � rjj, and Γi is the noise, with
hΓiðtÞΓjðt0Þi ¼ 2ðd � 1ÞηTδijδðt � t0Þ. In all simulations, we set T = 0.001.
The rotational diffusion coefficient of the particle, as described in ABP
models11 can be related to the ISM parameters asDr = T/η. The interactions
[Eq. (2)] are implementedwithin the LAMMPS framework48,49, and the time
integration in our simulations is performed using the velocity-Verlet
algorithm50.

Data availability
The simulationdata and analysis scripts that support the results of this study
are available at Zenodo52. The figures can be replotted from the Supple-
mentary Data file.

Code availability
The simulation code developed for this study is available at Zenodo49.
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