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Lattice Calculation of the Sn Isotopes near the Proton Dripline
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We present the first ab initio lattice calculations of the proton-rich tin isotopes *°Sn to '°%Sn using nuclear
lattice effective field theory with high-fidelity two- and three-nucleon forces. For a given set of three-
nucleon couplings, we reproduce binding energies with ~1% accuracy for the even—even systems and
obtain energy splitting and two-nucleon separation energies in agreement with experiment. Our results
confirm the N = 50 shell closure and reveal that the binding energy of °Sn lies below values extrapolated

from heavier isotopes.
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Introduction—The '%°Sn isotope is a particularly fasci-
nating nucleus. It is a rare example of a doubly magic
nucleus [1] with equal proton and neutron numbers,
Z = N =50, and it sits close to the proton dripline of the
extensive tin isotopic chain. It also exhibits among the
largest known allowed p-decay strengths and features
enhanced a decays [2]. These features make it central to
both studies of nuclear structure and astrophysical nucleo-
synthesis. For a detailed overview of the experimental and
theoretical developments surrounding this nucleus, we refer
the reader to Ref. [3]. The neighboring isotopes *°Sn, '°'Sn,
and '2Sn are equally important and pose formidable
challenges to ab initio nuclear theory [4], where weak
binding, continuum coupling, and Coulomb effects amplify
the impact of many-body truncations and the calibration of
three-nucleon (3N) forces. Few regions of the nuclear chart
combine such a sharp theoretical challenge with equally
rapid experimental progress. Recent advancements at
radioactive-ion-beam facilities have enabled high-precision
mass measurements, decay spectroscopy, and spectroscopic
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studies of '%°Sn and nearby isotopes [5,6], offering stringent
benchmarks for modern nuclear interactions. These devel-
opments highlight the urgent need for theoretical frame-
works that can treat medium-to-heavy exotic nuclei from
first principles. On the theoretical side, significant progress
has been made in recent years toward extending ab initio
calculations into the medium-mass and heavy-mass region.
A first breakthrough in this direction was achieved in
Ref. [7], in which continuum chiral two- and three-nucleon
forces were combined with coupled-cluster and valence-
space in-medium similarity renormalization group (VS-
IMSRG) methods, yielding first-principles predictions of
the doubly magic character of '°°Sn and quadrupole collec-
tivity consistent with a closed shell. More recently,
Bogoliubov coupled-cluster theory was used to work out
the properties of open-shell Ca, Ni, and Sn isotopes [8],
extending the mass range to A ~ 180 and predicting the
location of the pertinent neutron driplines. Similarly, the
systematics of the tin isotopic chain from '%Sn to *8Sn
were explored in Ref. [9], calculating two-neutron sepa-
ration energies, the two-neutron shell gap, and the intrinsic
axial quadrupole deformation. Note that many of these
calculations have relied heavily on the EM 1.8/2.0 chiral
interaction [10], which combines a precision next-to-
next-to-next-to-leading-order (N’LO) two-nucleon force
with next-to-next-to-leading-order three-nucleon terms.
This interaction describes most features of even—even
(and other) nuclei quite well (such as ground-state ener-
gies) and is widely used in ab initio nuclear theory (see,
e.g., Refs. [11-15]). However, it does not resolve the
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well-known radius problem [16-19] and also shows a
pronounced regulator (cutoff) dependence. For a review
of ab initio many-body methods combined with chiral
forces like EM 1.8/2.0 across the nuclear landscape, see
Ref. [20]. More recently, this interaction was also used to
elucidate the structure of the doubly magic nuclei 2®Pb
and 2%Pb [21].

An entirely different approach to nuclear structure and
reaction physics is provided by nuclear lattice effective
field theory (NLEFT). For an introduction, see Ref. [22],
and for a recent review see Ref. [23]. In NLEFT, space—
time is represented by a four-dimensional grid with volume
L3 x L,, where L (L,) is the spatial (temporal) extent, and L
is chosen large enough to suppress finite-volume effects.
The spatial discretization defines the lattice spacing a; here
we work with a = 1.32 fm. This corresponds to a maxi-
mum momentum of about 470 MeV, sufficient to employ
chiral nuclear forces. NLEFT calculations with high-fidel-
ity chiral forces at N°LO, combined with the method of
wavefunction matching and smeared three-nucleon forces
[24], have already achieved precise results for binding
energies and radii of nuclei up to A = 58 as well as the
equation of state of nuclear and neutron matter up to twice
nuclear matter density. With the advent of exascale com-
putational capabilities now available with JUPITER at
Forschungszentrum Jiilich [25], it has become feasible to
extend these investigations into the region of nuclei
with A~100. A first NLEFT study of '°Sn using
SU(4)-symmetric forces supplemented with a spin—orbit
interaction was presented in Ref. [26].

In this Letter, we focus on the four tin isotopes
98n—192Sn, located near the proton dripline. This Letter
constitutes the first ab initio lattice investigation in this
mass region and extends earlier NLEFT calculations of
lighter proton-rich systems, such as 2Si [27], to much
heavier nuclei using high-fidelity interactions. Our results
should be regarded as a first exploratory but important step
into a previously inaccessible domain for NLEFT, provid-
ing new insight into the role of three-nucleon forces, shell
closures, and proton-rich binding. At the same time, they
establish a foundation for systematic lattice studies of the
entire tin isotopic chain and its excitations.

Methodology—We perform lattice calculations of the
ground-state energies of the proton-rich isotopes *°~102Sn
closest to the assumed proton dripline. We employ NLEFT
with high-fidelity chiral interactions at N*LO, as developed
in Ref. [24]. The Hamiltonian includes nonlocally regu-
lated two-nucleon (2N) forces, where the appearing low-
energy constants (LECs) are fitted to neutron-proton
scattering data, as well as three-nucleon (3N) interactions
consisting of locally smeared contact terms, one-pion
exchange terms with locally smeared two-nucleon contacts,
and the two-pion exchange potential, whose LECs are fixed
from pion-nucleon scattering [28]. In addition, two SU(4)

symmetric terms, VEIE) and VE.tE), are included, yielding a
total of eight independent LECs constrained by the ground-
state energies of light- and medium-mass nuclei up to *°Ca,
and the same set is employed in this Letter without further
adjustment. The Hamiltonian also includes the Coulomb
interaction, which in the counting applied here is a next-to-
leading-order effect, and Galilean invariance restoration
terms that restore the proper dispersion relations affected by
nonlocal smearing interactions [29].

In NLEFT, the nuclear wave function |¥) can be written
as an auxiliary field path-integral expression,

¥ = / Dsy -+ Dsy psM(sp) - M(s) ¥}, (1)

where the initial wave function |¥y) is an A-nucleon Slater
determinant, such as alpha cluster states or shell-model
wave functions, and the Euclidean time evolution is
encoded in the normal-ordered transfer matrix M as a
function of the Hamiltonian. Further, s; denotes the set of
auxiliary fields at the time step i. Since any observable is
calculated in terms of |¥), any sign oscillation in M
directly influences computation of the ground-state ener-
gies considered here.

During the Euclidean time evolution, we use a simplified
Hamiltonian H consisting of aregulated one-pion exchange
as described in Ref. [30] and an SU(4) symmetric two-
nucleon short-range interaction. The difference between H
and the full chiral Hamiltonian H is treated perturbatively
via wavefunction matching method as detailed in Ref. [24].
This approach allows us to perform calculations using high-
fidelity interactions with a reduced sign problem.

Simulations are carried out in a periodic cubic volume
of L = 12 lattice units (l.u.) with spatial lattice spacing
a =132 fm, which corresponds to a box length of
15.84 fm. Note that this length is surpassing the phenom-
enological radius of '°Sn, R = 1.3 fm x A!/3 ~ 6 fm, by
more than a factor of two, thereby minimizing finite volume
effects. Furthermore, the recent calculations in Ref. [26],
which were mostly performed at L = 11 Lu., confirm that
this choice is sufficient. We also note that the chosen lattice
spacing corresponds to a maximum momentum of
470 MeV, which is a preferred momentum scale in view
of the constraints from large-N,. in QCD [31].

For simulations of even—even nuclei at N = Z, the
NLEFT sign problem is strongly suppressed, allowing
calculations with reliable statistics, in particular for
three-body operators. The impact for even—even nuclei
close to neutron-proton equality N ~ Z is moderate. We
perform such calculations starting from shell-model initial
states for up to L, = 1600 time steps, using the standard
temporal lattice spacing a, = (1000 MeV)~!. For the even-
odd nuclei Sn and '°!Sn, reasonable calculations are
limited to L, ~ 1000. The dependence of the corresponding
average complex phase

062501-2



PHYSICAL REVIEW LETTERS 136, 062501 (2026)

T T T T T T T T T T T T T T T T T T

1 s0mend g =

r © , O oo O o

L CEN J

< Flo ggsn A . i
© 051 100 ° N ]
~ FH Sn A 1
L A B

| |o101Sn o o a

|2 10280 © o 1

s —r—r— o b b

0 500 1,000 1,500
Lt [11,1]

FIG. 1. The average phase (¢™) as a function of time steps L,.

(e) = (det(My,)/] det(M,)

2 )

with M, the transfer matrix product up to Euclidean time
L,, is depicted in Fig. 1. Not unexpectedly, the phase of the
even—odd nuclei is decreasing significantly faster than the
one for even—even nuclei, yet there is still a sufficiently
strong signal to precisely extract the corresponding ground-
state energies of *Sn and '"'Sn. We also note that the
required Euclidean time evolution for high-fidelity inter-
actions exceeds the ones needed for a pure SU(4) sym-
metric calculation substantially, compared with Ref. [26].

As detailed in Ref. [24] the SU(4)-symmetric 2N
coupling C, is optimized by minimizing the ground-state
energy. Since calculations here are computationally high
demanding, we perform this analysis only for '°°Sn at
L, = 500, where the phase (e) is well under control. The
resulting value, C; = 0.42 x 107® MeV~2, is then held
fixed for all subsequent simulations. The total amount of
supercomputer time used on JUPITER is ~36 x 10° core
hours corresponding to about ~500 x 10° GPU hours.

Expectation values of operators, including sums of 2N
terms at different orders and all 3N operators, are extrapo-
lated from finite Euclidean times to 7 — oo using a
combined extrapolation approach with a double-exponen-
tial ansatz, accounting for the second-order correction of
the wave function,

(O(2)) = (O(c0)) +aexp (—~AEz) + bexp (~AE7/2), (3)

where 7 is the Euclidean time, O(o0) corresponds to the
asymptotic value, and a, b, and AE are fit parameters.
The decay parameter AE is shared among operators
involved in the fit. As in Ref. [24], we fit the different
2N and 3N operator structures separately and then combine
these to the final result. Although not all operators are
evolved to maximal L, due to the computational costs and
the convergence behavior (see Fig. 1), the double expo-
nential form provides a good description for all operators.

Results and discussion—The distributions of the ground-
state energies of the isotopes °°7102Sn obtained with
NLEFT at N°*LO are shown in Fig. 2, with central values
and uncertainties obtained from correlated extrapolations of
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FIG. 2. Distribution of the obtained binding energies B for
98n—192Sn. The central values are indicated by the dashed black
lines and given on the top axis of the plot. For further details, see
Table I.

the individual operator contributions. The results, together
with the modified 3N interaction (N*LO*), are summarized
in Table I, alongside experimental values.

We note that the precision of the even—even isotopes is
visibly superior to that of the odd-A systems, which is
consistent with expectations from Fig. 1. This reflects the
suppression of the sign problem for N = Z nuclei, which
allows for tighter constraints on three-body operators at
long Euclidean times. For odd-A isotopes, statistical
degradation manifests in the larger uncertainties quoted
in Table 1. For all isotopes, calculations with the original
N3LO Hamiltonian systematically underbind by about 5%
relative to experiment [32]. This is not unexpected, as the
three-nucleon forces were originally constrained in the
light-to-medium-mass region up to *°Ca, some 60 nucleons
lighter than the systems considered here [24]. Note also that
these 3N forces are attractive for heavy systems, as already
seen and discussed in the study of nuclear matter in [24].

To assess the role of three-nucleon forces, we performed

controlled variations of two SU(4)-symmetric 3N cou-

plings, VE )

IE and VEtE) originally motivated by a-cluster
effective field theory (EFT). With only a percent-level
adjustment, we reproduce the experimental binding energy
of 1%Sn (denoted by N3LO* in Table I). Remarkably, this
modification brings the neighboring isotopes *°Sn, '°'Sn,
and '%Sn into quantitative agreement with experiment
without further tuning. Such behavior points to a systematic
underestimation of the effective 3N contribution in heavier
nuclei, plausibly reflecting less prominent relevance of
a-cluster-motivated operators in heavier nuclei (see, e.g.,
Ref. [33]). Importantly, the required modifications in LECs
remain small enough to preserve good agreement with the
nuclei originally used in the fit, such as shifts of 1.7% for
40Ca and 0.7% for “He.

Mass differences between the isotopes provide an even
more stringent benchmark, and we extract the two-neutron
separation energy S,
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TABLE I.  Ground-state binding energy of selected Sn isotopes
at N3LO with the LECs from Ref. [24] (N*LO) and two modified
3N LECs as described in the text (N’LO*). The experimental
results are taken from Ref. [32]. Note that the experimental value
for ®°Sn is extrapolated. All energies are given in MeV.

Nucleus N3LO [24] N3LO* Expt.
9Sn 765+ 8 804 £ 8 807.9 4+ 0.6
1005 786.5+3 8252+ 3.0 825.16 + 0.24
101§ 795 + 10 834 + 10 836.39 + 0.3
1025 808.5 + 3.4 848.1 + 3.4 849.09 + 0.1
Sopn =E(Z,N)—E(Z,N -2), (4)

with E(Z,N) the energy of the nucleus with the proton
number Z and the neutron number N. The results are
presented in Table II, and we observe overall consistency
with other theoretical results (see, e.g., Ref. [8]). Table II
shows that the N°*LO* Hamiltonian reproduces two-neutron
separation energies and nearest-neighbor splittings to
within experimental uncertainties. In particular, the calcu-
lated S,,('%%Sn) = 22.9(46) MeV compares favorably
with the precise experimental value of 23.9(3) MeV. The
9Sn-199Sn splitting shows a ~10 MeV enhancement rel-
ative to neighboring pairs, consistent with the expected
N = 50 shell closure [34]. Thus, our results provide an
ab initio confirmation of the doubly magic nature of '°°Sn,
confirming earlier coupled-cluster predictions [7].

These findings are noteworthy when compared to other
state-of-the-art approaches. Coupled-cluster calculations in
the tin region [7] and VS-IMSRG studies up to '?8Sn [8]
reproduce global separation energy trends but typically
exhibit interaction-dependent discrepancies in absolute
binding energies. In contrast, NLEFT with high-fidelity
chiral forces and modest 3N adjustments captures both
absolute and differential observables in the proton-rich
regime.

The physical origin of the successful reproduction of
experimental energies can be traced to the delicate interplay
of strong 2N and 3N interactions as well as the Coulomb
repulsion between protons. For instance, in '%Sn the
kinetic plus two-nucleon interaction contributions to the
binding energy amounts to 717.9 MeV, balanced by a large
repulsive Coulomb contribution of —366.8 MeV and an
attractive 3N contribution of 435.6 MeV. The net result
matches experiment only when the 3N sector is slightly
enhanced, underscoring its central role in stabilizing pro-
ton-rich systems against Coulomb repulsion. Interestingly,
the Coulomb contribution is lower than a modern version of
the modified Bethe-Weizsicker formula [35] and differs by
~20 MeV from earlier SU(4)-based lattice calculations
[26], which is even further away, highlighting the impor-
tance of high-fidelity chiral interactions in quantifying
fine details.

TABLE II. Mass splittings. All energies are given in MeV. For
further details, see Table 1.

Isotopes N’LO N3LO* Expt.

102-101 13.5£10.6 14.1 £10.6 12.7+0.3
102-100° 22.5+4.6 229 +4.6 239403
102-99 43.5+8.7 44.1 £ 8.7 41.2£0.6
101-100 85+104 89+104 11.2+£04
101-99° 30+ 12.8 30.1 £12.8 28.5+0.7
100-99 21.5+8.6 21.2+8.6 17.3 £0.7

“Denotes a two-neutron separation energy S, [see Eq. (4)].

Finally, experimental benchmarks provide additional
perspective. Recent experimental progress has sharpened
the benchmarks for ab initio theory in the proton-rich tin
region. ISOLTRAP measurements have refined the nuclear
mass surface by reducing the uncertainty in the !%Sn,
leading to revised and less bound mass values for 1°!Sn and
neighboring isotopes [5]. High-precision mass measure-
ments of 1%3Sn have further reduced uncertainties, reestab-
lishing a smooth mass surface near the doubly magic '*°Sn
and correcting earlier irregularities in the atomic mass
evaluation [6]. These developments offer a natural target for
future lattice investigations, and our present calculations
demonstrate, for the first time, that lattice EFT can achieve
quantitative agreement with the new mass benchmarks in a
mass region previously considered inaccessible for ab initio
lattice methods.

Summary and outlook—We have performed the first
ab initio lattice calculations of the proton-rich tin isotopes
9Sn—19Sn in the framework of NLEFT, based on high-
fidelity chiral forces at N3LO previously used to explore the
mass region from the deuteron to *®Ni [24,27,36-41]. The
three-nucleon LECs entering these interactions were origi-
nally constrained up to “’Ca [24], well below the mass
region considered here. Using these N3LO forces as is, we
observe a systematic underbinding of about 5% in absolute
energies, while mass differences and two-neutron separa-
tion energies are consistent with experiment within the
uncertainties. As expected from the suppressed sign prob-
lem at N = Z, the uncertainties in the binding energies of
the even—even isotopes are below 1%, whereas they are of
the order of 1% for the odd isotopes.

To assess the role of three-nucleon forces in this heavier,
proton-rich regime, we have carried out a controlled, slight
retuning of two particular 3N-force operators. This percent-
level modification leads to an almost exact reproduction
of the experimental values for '°°Sn, 19'Sn, and '9’Sn and
reduces the central value of the °°Sn binding energy
compared to the extrapolated value [32]. Importantly, this
adjustment retains the good description of the nuclei reported
in the original fit. Therefore, our investigation indicates that a
more comprehensive calibration of three-nucleon forces,
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incorporating data from heavier nuclei, is necessary. This
might also require the inclusion of reaction data, as recently
pointed out in Ref. [41]. Furthermore, it will be interesting to
explore the whole Sn isotope chain and also consider excited
states (in particular 21), charge radii, f-decays, and collective
excitations. Such work is underway but requires substantial
computational resources.
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