000010545 001__ 10545
000010545 005__ 20200423202802.0
000010545 0247_ $$2pmid$$apmid:20444220
000010545 0247_ $$2DOI$$a10.1111/j.1365-3040.2010.02157.x
000010545 0247_ $$2WOS$$aWOS:000279610200014
000010545 037__ $$aPreJuSER-10545
000010545 041__ $$aeng
000010545 082__ $$a570
000010545 084__ $$2WoS$$aPlant Sciences
000010545 1001_ $$0P:(DE-Juel1)129360$$aMetzner, R.$$b0$$uFZJ
000010545 245__ $$aContrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS
000010545 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2010
000010545 300__ $$a1393 - 1407
000010545 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010545 3367_ $$2DataCite$$aOutput Types/Journal article
000010545 3367_ $$00$$2EndNote$$aJournal Article
000010545 3367_ $$2BibTeX$$aARTICLE
000010545 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010545 3367_ $$2DRIVER$$aarticle
000010545 440_0 $$04976$$aPlant, Cell and Environment$$v33$$x0140-7791$$y8
000010545 500__ $$aRecord converted from VDB: 12.11.2012
000010545 520__ $$aLateral exchange of water and nutrients between xylem and surrounding tissues helps to de-couple uptake from utilization in all parts of a plant. We studied the dynamics of these exchanges, using stable isotope tracers for water (H(2)(18)O), magnesium ((26)Mg), potassium ((41)K) and calcium ((44)Ca) delivered via a cut stem for various periods to the transpiration stream of bean shoots (Phaseolus vulgaris cv. Fardenlosa Shiny). Tracers were subsequently mapped in stem cross-sections with cryo-secondary ion mass spectrometry. The water tracer equilibrated within minutes across the entire cross-section. In contrast, the nutrient tracers showed a very heterogeneous exchange between xylem vessels and the different stem tissues, even after 4 h. Dynamics of nutrients in the tissues revealed a fast and extensive exchange of nutrients in the xylem parenchyma, with, for example, calcium being completely replaced by tracer in less than 5 min. Dilution of potassium tracer during its 30 s transit in xylem sap through the stem showed that potassium concentration was up-regulated over many hours, to the extent that some of it was probably supplied by phloem recirculation from the shoot.
000010545 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000010545 588__ $$aDataset connected to Web of Science, Pubmed
000010545 650_2 $$2MeSH$$aIsotopes: analysis
000010545 650_2 $$2MeSH$$aPhaseolus: metabolism
000010545 650_2 $$2MeSH$$aPhaseolus: physiology
000010545 650_2 $$2MeSH$$aPlant Stems: metabolism
000010545 650_2 $$2MeSH$$aPlant Stems: physiology
000010545 650_2 $$2MeSH$$aPlant Transpiration
000010545 650_2 $$2MeSH$$aWater: metabolism
000010545 650_2 $$2MeSH$$aXylem: metabolism
000010545 650_2 $$2MeSH$$aXylem: physiology
000010545 650_7 $$00$$2NLM Chemicals$$aIsotopes
000010545 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000010545 650_7 $$2WoSType$$aJ
000010545 65320 $$2Author$$acalcium
000010545 65320 $$2Author$$afrozen-hydrated
000010545 65320 $$2Author$$amagnesium
000010545 65320 $$2Author$$apotassium
000010545 65320 $$2Author$$astable isotopes
000010545 65320 $$2Author$$aToF-SIMS
000010545 65320 $$2Author$$atransport
000010545 65320 $$2Author$$axylem
000010545 7001_ $$0P:(DE-Juel1)VDB67249$$aThorpe, M.R.$$b1$$uFZJ
000010545 7001_ $$0P:(DE-Juel1)VDB2782$$aBreuer, U.$$b2$$uFZJ
000010545 7001_ $$0P:(DE-Juel1)VDB49819$$aBlümler, P.$$b3$$uFZJ
000010545 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b4$$uFZJ
000010545 7001_ $$0P:(DE-Juel1)129397$$aSchneider, H. U.$$b5$$uFZJ
000010545 7001_ $$0P:(DE-Juel1)VDB1472$$aSchröder, W. H.$$b6$$uFZJ
000010545 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/j.1365-3040.2010.02157.x$$gp. 1393 - 1407$$p1393 - 1407$$q1393 - 1407$$tPlant, cell & environment$$x0140-7791$$y2010
000010545 8567_ $$uhttp://dx.doi.org/10.1111/j.1365-3040.2010.02157.x
000010545 8564_ $$uhttps://juser.fz-juelich.de/record/10545/files/FZJ-10545.pdf$$yRestricted$$zPublished final document.
000010545 909CO $$ooai:juser.fz-juelich.de:10545$$pVDB
000010545 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000010545 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000010545 9141_ $$y2010
000010545 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010545 9201_ $$0I:(DE-Juel1)ZCH-20090406$$gZCH$$kZCH$$lZentralabteilung für Chemische Analysen$$x0
000010545 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000010545 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000010545 970__ $$aVDB:(DE-Juel1)120916
000010545 980__ $$aVDB
000010545 980__ $$aConvertedRecord
000010545 980__ $$ajournal
000010545 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000010545 980__ $$aI:(DE-Juel1)IBG-2-20101118
000010545 980__ $$aI:(DE-82)080011_20140620
000010545 980__ $$aUNRESTRICTED
000010545 981__ $$aI:(DE-Juel1)ZEA-3-20090406
000010545 981__ $$aI:(DE-Juel1)IBG-2-20101118
000010545 981__ $$aI:(DE-Juel1)VDB1047