001     10562
005     20200423202803.0
024 7 _ |a 10.1524/zpch.2010.6110
|2 DOI
024 7 _ |a WOS:000281124800006
|2 WOS
024 7 _ |a 0942-9352
|2 ISSN
024 7 _ |a 2128/18346
|2 Handle
037 _ _ |a PreJuSER-10562
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
100 1 _ |0 P:(DE-HGF)0
|a Schindlmayr, A.
|b 0
245 _ _ |a First-Principles Calculation of Electronic Excitations in Solids with SPEX
260 _ _ |a München
|b Oldenbourg
|c 2010
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 6031
|a Zeitschrift für physikalische Chemie
|v 224
|x 0942-9352
|y 3
500 _ _ |a We benefitted from useful discussions with G. Bihlmayer, M. Niesert, A. Gierlich, F. Freimuth, T. Kotani and T. Miyake. Financial support from the Deutsche Forschungsgemeinschaft through the Priority Programme 1145 and from the EU's Sixth Framework Programme through the Nanoquanta Network of Excellence (NMP4-CT-2004-500198) is gratefully acknowledged.
520 _ _ |a We describe the software package SPEX, which allows first-principles calculations of quasiparticle and collective electronic excitations in solids using techniques from many-body perturbation theory. The implementation is based on the full-potential linearized augmented-plane-wave (FLAPW) method, which treats core and valence electrons on an equal footing and can be applied to a wide range of materials, including transition metals and rare earths. After a discussion of essential features that contribute to the high numerical efficiency of the code, we present illustrative results for quasiparticle band structures calculated within the GW approximation or the electronic self-energy, electron-energy-loss spectra with inter- and intraband transitions as well as local-field effects, and spin-wave spectra of itinerant ferromagnets. In all cases the inclusion of many-body correlation terms leads to very good quantitative agreement with experimental spectroscopies.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Many-Body Perturbation Theory
653 2 0 |2 Author
|a Self-Energy
653 2 0 |2 Author
|a Quasiparticle Band Structure
653 2 0 |2 Author
|a Dielectric Function
653 2 0 |2 Author
|a Spin Waves
700 1 _ |0 P:(DE-Juel1)VDB418
|a Friedrich, C.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB63896
|a Sasioglu, E.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, S.
|b 3
|u FZJ
773 _ _ |0 PERI:(DE-600)2020854-6
|a 10.1524/zpch.2010.6110
|g Vol. 224
|q 224
|t Zeitschrift für Physikalische Chemie
|v 224
|x 0942-9352
|y 2010
856 7 _ |u http://dx.doi.org/10.1524/zpch.2010.6110
856 4 _ |u https://juser.fz-juelich.de/record/10562/files/%5BZeitschrift%20fr%20Physikalische%20Chemie%5D%20First-Principles%20Calculation%20of%20Electronic%20Excitations%20in%20Solids%20with%20SPEX.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10562/files/%5BZeitschrift%20fr%20Physikalische%20Chemie%5D%20First-Principles%20Calculation%20of%20Electronic%20Excitations%20in%20Solids%20with%20SPEX.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10562/files/%5BZeitschrift%20fr%20Physikalische%20Chemie%5D%20First-Principles%20Calculation%20of%20Electronic%20Excitations%20in%20Solids%20with%20SPEX.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10562/files/%5BZeitschrift%20fr%20Physikalische%20Chemie%5D%20First-Principles%20Calculation%20of%20Electronic%20Excitations%20in%20Solids%20with%20SPEX.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:10562
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2010
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1346
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)120943
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)VDB881
981 _ _ |a I:(DE-Juel1)VDB1346


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21