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On the dependence of the leak-rate of seals on the skewness of the surface height

probability distribution
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2 IFAS, RWTH Aachen University, D-52074 Aachen, Germany

Seals are extremely useful devices to prevent fluid leakage. We present experimental result which
show that the leak-rate of seals depend sensitively on the skewness in the height probability distri-
bution. The experimental data are analyzed using the critical-junction theory. We show that using
the top-power spectrum result in good agreement between theory and experiment.

A seal is a device for closing a gap or making a joint
fluid tight[1]. Seals play a crucial role in many modern
engineering devices, and the failure of seals may result
in catastrophic events, such as the Challenger disaster.
In spite of its apparent simplicity, it is not easy to pre-
dict the leak-rate and (for dynamic seals) the friction
forces[2]. The main problem is the influence of surface
roughness on the contact mechanics at the seal-substrate
interface. Most surfaces of engineering interest have sur-
face roughness on a wide range of length scales[3], e.g,
from cm to nm, which will influence the leak rate and
friction of seals, and accounting for the whole range of
surface roughness is impossible using standard numerical
methods, such as the Finite Element Method.

Randomly rough surfaces have Gaussian height proba-
bility distribution but many surfaces of engineering inter-
est have skewed distributions which may effect the leak
rate of seals. To illustrate this we consider an extreme
case: a rigid solid block with a flat surface in contact
with a rigid substrate with periodic “roughness” as in
Fig. 1. The substrate surfaces in (a) and (b) have the
same root-mean-square roughness and the same surface
roughness power spectrum, but it is clear that in (a) the
empty volume between the surfaces is larger than in (b),
resulting in a larger leak rate. In the real situation the
roughness is not periodic and the solids are not rigid, but
one may expect a higher leak rate for the situation where
the asymmetry of the height profile is as for case (a).

To study the point discussed above, we have performed
experiments using sandpaper which has a skewed height
probability distribution as in Fig. 1(a). We have also
used surfaces with “inverted” surface roughness profile
by producing a “negative” of the sandpaper surface using
silicon rubber. In the latter experiments we squeezed
a silicon rubber ring, which was cross-linked with the
sandpaper surface as the substrate, against a flat glass
surface. By comparing the measured leak-rate for this
configuration with that for a silicon ring with flat bottom
surface squeezed against the same sandpaper surface, we
are able to address the problem illustrated in Fig. 1.

We briefly describe the leak-rate model[3–8] and ex-
perimental set-up used in this study. Consider the fluid
leakage through a rubber seal, from a high fluid pres-
sure Pa region, to a low fluid pressure Pb region. In

(a)

(b)

substrate

block

FIG. 1: Contact between a rigid block with a flat surface
and a rigid substrate with periodic surface structures. The
two substrate surfaces in (a) and (b) have the same surface
roughness power spectrum. Note that the empty volume be-
tween the surfaces is much larger in the case (a) than in case
(b).

our experimental study we have used the experimental
set-up shown in Fig. 2 for measuring the leak-rate of
seals. A glass (or PMMA) cylinder with a rubber ring
attached to one end is squeezed against a hard substrate
with well-defined surface roughness. The cylinder is filled
with water, and the leak-rate of the water at the rubber-
countersurface is detected by the change in the height of
the water in the cylinder. Thus Pa−Pb = ρgH , where H
is the height of the water column, and ρ the mass density
of water. For further experimental details, see Ref. [4, 7].

Assume that the nominal contact region between the
rubber and the hard countersurface is rectangular with
area Lx × Ly, with Ly > Lx. We assume that the high
pressure fluid region is for x < 0 and the low pressure
region for x > Lx. We “divide” the contact region into
squares with the side Lx = L and the area A0 = L2

(this assumes that N = Ly/Lx is an integer, but this
restriction does not affect the final result). Now, let us
study the contact between the two solids within one of
the squares as we increase the magnification ζ. We define
ζ = L/λ, where λ is the resolution. We study how the
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FIG. 2: Experimental set-up for measuring the leak-rate
of seals. A glass (or PMMA) cylinder with a rubber ring
attached to one end is squeezed against a hard substrate
with well-defined surface roughness. The cylinder is filled
with water, and the leak-rate of the water at the rubber-
countersurface is detected by the change in the height of the
water in the cylinder.

apparent contact area (projected on the xy-plane), A(ζ),
between the two solids depends on the magnification ζ.
At the lowest magnification we cannot observe any sur-
face roughness, and the contact between the solids ap-
pears to be complete i.e., A(1) = A0. As we increase the
magnification we will observe some interfacial roughness,
and the (apparent) contact area will decrease. At high
enough magnification, say ζ = ζc, a percolating path
of non-contact area will be observed for the first time.
We denote the most narrow constriction along this per-
colation path as the critical constriction. The critical
constriction will have the lateral size λc = L/ζc and the
surface separation at this point is denoted by uc. We can
calculate uc using a recently developed contact mechan-
ics theory[12] (see below). As we continue to increase the
magnification we will find more percolating channels be-
tween the surfaces, but these will have more narrow con-
strictions than the first channel which appears at ζ = ζc,
and as a first approximation one may neglect the contri-
bution to the leak-rate from these channels[6].

A first rough estimate of the leak-rate is obtained by
assuming that all the leakage occurs through the critical
percolation channel, and that the whole pressure drop
∆P = Pa − Pb (where Pa and Pb is the pressure to the
left and right of the seal) occurs over the critical constric-
tion (of width and length λc ≈ L/ζc and height uc). We
refer to this theory as the critical-junction theory. If we
approximate the critical constriction as a pore with rect-
angular cross section (width and length λc and height
uc << λc), and if we assume an incompressible New-
tonian fluid, the volume-flow per unit time through the

=
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FIG. 3: The surface profile h(x) is decomposed into a top
hT(x) and a bottom hB(x) profile.

critical constriction will be given by (Poiseuille flow)

Q̇ =
u3
c

12η
∆P, (1)

where η is the fluid viscosity. In deriving (1) we have
assumed laminar flow and that uc << λc, which is
always satisfied in practice. Finally, since there are
N = Ly/Lx square areas in the rubber-countersurface
(apparent) contact area, we get the total leak-rate

Q̇ =
Ly

Lx

u3
c

12η
∆P. (2)

Note that a given percolation channel could have sev-
eral narrow (critical or nearly critical) constrictions of
nearly the same dimension which would reduce the flow
along the channel. But in this case one would also expect
more channels from the high to the low fluid pressure
side of the junction, which would tend to increase the
leak rate. These two effects will, at least in the simplest
picture, compensate each other (see Ref. [6]). The ef-
fective medium theory presented in Ref. [7] includes (in
an approximate way) all the flow channels, but gives re-
sults very similar to the critical-junction theory described
above[9].
To complete the theory we must calculate the separa-

tion uc of the surfaces at the critical constriction. We
first determine the critical magnification ζc by assuming
that the apparent relative contact area at this point is
given by percolation theory. Thus, the relative contact
area A(ζ)/A0 ≈ 1− pc, where pc is the so called percola-
tion threshold[10]. Numerical contact mechanics studies,
such as those presented in Ref. [6] and Ref. [11], typi-
cally give pc between 0.5 and 0.6. For finite sized systems
the percolation will, on the average, occur for (slightly)
smaller values of pc, and fluctuations in the percolation
threshold will occur between different realizations of the
same physical system. Here we use pc = 0.6 to determine
the critical magnification ζ = ζc.
The (apparent) relative contact area A(ζ)/A0 and the

interfacial separation u1(ζ) at the magnification ζ can be
obtained using the contact mechanics formalism devel-
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FIG. 4: The power spectrum C(q) and the top C∗

T(q) and bot-
tom C∗

B(q) power spectrum for a mathematically generated
randomly rough surface with a Gaussian height probability
distribution. The surface is self affine fractal for q > 105 m−1

with the fractal dimensionDf = 2.2 and the root-mean-square
roughness 0.8 µm.

oped elsewhere[12–19]. We define u1(ζ) to be the (aver-
age) height separating the surfaces which appear to come
into contact when the magnification decreases from ζ to
ζ−∆ζ, where ∆ζ is a small (infinitesimal) change in the
magnification. Since the surfaces of the solids are ev-
erywhere rough the actual separation between the solid
walls will fluctuate around the average u1(ζ). Thus we
expect uc = αu1(ζc), where α < 1 (but of order unity).
We note that α is due to the surface roughness which
occur at length scales shorter than λc, see Ref. [7].
In the contact mechanics theory of Persson, the sur-

face roughness enter only via the surface roughness power
spectrum

C(q) =
1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x

where 〈...〉 stands for ensemble average, and where we
have assumed 〈h〉 = 0. A randomly rough surface has a
Gaussian height probability distribution, P (h), but many
surfaces of practical use have a skewed height distribu-
tion. For this latter case it is useful to introduce the top

and bottom power spectra defined as follows[3]:

CT(q) =
1

(2π)2

∫
d2x 〈hT(x)hT(0)〉e

−iq·x

CB(q) =
1

(2π)2

∫
d2x 〈hB(x)hB(0)〉e

−iq·x

where hT(x) = h(x) for h > 0 and zero otherwise, while
hB(x) = h(x) for h < 0 and zero otherwise. These are
“rectified” profiles; see Fig. 3. It is clear by symmetry
that for a randomly rough surface with Gaussian height
distribution, CT(q) = CB(q). If nT and nB are the frac-
tions of the nominal surface area (i.e., the surface area
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FIG. 5: The surface height probability distribution for sand-
paper 100 and 120 surfaces with the root-mean-square rough-
ness amplitudes 40 µm and 31 µm. The two surfaces have the
skewness 〈h3〉/〈h2〉3/2 = 0.85 and 0.82 respectively.

projected on the xy-plane) where h > 0 and h < 0, re-
spectively, then we also define C∗

T
(q) = CT(q)/nT and

C∗

B
(q) = CB(q)/nB. Roughly speaking, C∗

T
would be

the power spectrum resulting if the actual bottom profile
(for h < 0) was replaced by a mirrored top profile (for
h > 0). A similar statement holds for C∗

B
. For randomly

rough surfaces with Gaussian height distribution we ex-
pect C∗

T
(q) = C∗

B
(q) ≈ C(q). That this is indeed the

case is illustrated in Fig. 4 which shows the calculated
C(q), C∗

T
(q) and C∗

B
(q) for a mathematically generated

randomly rough surface with a Gaussian height proba-
bility distribution. The surface is self affine fractal for
q > 105 m−1 with the fractal dimension Df = 2.2 and
the root-mean-square roughness 0.8 µm.

The contact mechanics theory of Persson can be ap-
plied approximately to surfaces with skewed height dis-
tribution. However in this case, at least for small squeez-
ing pressures where the contact only occur at the highest
asperities, one should use C∗

T
(q) rather than C(q) in or-

der to better represent the surface roughness. We will
show below that by using C∗

T
(q) we can quantitatively

understand the leak-rate of rubber seals squeezed against
surfaces with skewed height probability distribution.

We have performed experiments using two sandpaper
surfaces (corundum paper, grit size 100 and 120) with the
the root-mean-square roughness 40 µm and 31 µm. From
the measured surface topography we obtain the height
probability distribution P (h) (Fig. 5) and the surface
roughness power spectrum shown in Fig. 6 and 7, respec-
tively. Note that for both surfaces P (h) is asymmetric
with a tail towards higher h. This is easy to understand:
sandpaper surfaces consist of particles with sharp edges
pointing above the surface, while the region between the
particles is filled with a resin-binder making the valleys
smoother and wider than the peaks [as in Fig. 1(a)],
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FIG. 6: Surface roughness power spectrum of sandpaper 100
surface. The three curves are the surface roughness power
spectrum C(q) of the original surface (red line), and the
top C∗

T(q) (blue) and bottom C∗

B(q) (green) surface rough-
ness power spectrum. The surface has the root-mean-square
roughness 40 µm. The fraction of the (projected) surface area
above above the average plane is about 0.44.
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FIG. 7: Surface roughness power spectrum of sandpaper 120
surface. The three curves are the surface roughness power
spectrum C(q) of the original surface (red line), and the
top C∗

T(q) (blue) and bottom C∗

B(q) (green) surface rough-
ness power spectrum. The surface has the root-mean-square
roughness 31 µm. The fraction of the (projected) surface area
above above the average plane is about 0.45.

which result in an asymmetric P (h) as observed.
In Fig. 8 we show the measured leak rate for sand-

paper 100 substrate (upper squares) and for an inverted
surface (lower squares). The solid lines are the calculated
leak rate using the critical-junction theory. In the calcu-
lation for the top curve we used the top power spectrum
C∗

T
(q) obtained from the measured surface topography.

For the inverted surface (bottom curve) we used the bot-
tom power spectrum C∗

B
(q) of the sandpaper surface.

In Fig. 9 we show similar results for the sandpaper
100 substrate (upper symbols) and for an inverted surface
(lower symbols). Note in Fig. 8 and 9 the huge difference
(roughly two orders of magnitude) between the leak-rate
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FIG. 8: Square symbols: the measured leak rate for sandpa-
per 100 substrate (upper symbols) and for an inverted surface
(lower symbols). The solid lines are the calculated leak rate
using the critical-junction theory with the percolation thresh-
old pc = 0.6. In the calculation for the top curve we used
the top power spectrum C∗

T(q) obtained from the measured
surface topography. For the inverted surface (bottom curve)
we used the bottom power spectrum C∗

B(q). The measured
rubber elastic modulus E = 2.3 MPa and the fluid pressure
difference ∆P = Pa − Pb = 10 kPa obtained from the height
of the water column. In the calculations we have used α = 1
(upper curve) and α = 0.8 (lower curve).
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FIG. 9: Square symbols: the measured leak rate for sandpa-
per 100 substrate (upper symbols) and for an inverted surface
(lower symbols). The solid lines are the calculated leak rate
using the critical-junction theory with the percolation thresh-
old pc = 0.6. In the calculation for the top curve we used
the top power spectrum C∗

T(q) obtained from the measured
surface topography. For the inverted surface (bottom curve)
we used the bottom power spectrum C∗

B(q). The measured
rubber elastic modulus E = 2.3 MPa and the fluid pressure
difference ∆P = Pa − Pb = 10 kPa obtained from the height
of the water column. In the calculations we have used α = 1
(upper curve) and α = 0.8 (lower curve).



for the two different configurations, involving the original
and inverted surface topographies. Note that the theory
is able to describe the observed effect if the top power
spectrum is used in the analysis (which means using the
bottom power spectrum of the sandpaper surfaces in the
case of the inverted surfaces). However, for the case of the
inverted surfaces the leak-rate for large enough squeez-
ing pressure decreases faster with the squeezing pressure
than is predicted by the theory. We attribute this to the
influence of adhesion on the leak-rate. That is, the asper-
ities of the inverted surface are quite smooth (they arise
from the relative smooth polymer (resin) film in the val-
leys between the particles of the original sand paper sur-
faces) which allow for effective adhesion between the rub-
ber and the glass and PMMA surfaces[20]. We note here
that the glass surfaces were not cleaned chemically and
therefore probably covered by nanometer thick organic
contamination layers[21]. Thus one expect a dewetting
transition[22, 23] in the asperity contact regions between
the substrate surface and the silicon rubber surface, re-
sulting in an effective adhesion which pulls the surfaces
in closer contact than expected by just the influence of
the squeezing pressure. Preliminary calculations includ-
ing adhesion indeed support this picture and will be re-
ported on elsewhere.
To summarize, we have compared experimental data

with theory for the leak-rate of seals. The theory is based
on percolation theory and a recently developed contact
mechanics theory. The experiments are for (a) silicon
rubber with a smooth surface in contact with two sandpa-
per surfaces, and (b) for silicon rubber surfaces prepared
by cross-linking the rubber in contact with the sandpa-
per surfaces, and then squeezing the rough rubber sur-
faces against flat glass and PMMA surfaces. The elastic
properties of the rubber and the surface topography of
the sandpaper and PMMA surfaces are fully character-
ized. We have shown that using the top power spectrum
in the theory results in good agreement between theory
and experiment.
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