001     10570
005     20180208233501.0
024 7 _ |2 DOI
|a 10.1016/j.jpowsour.2009.05.024
024 7 _ |2 WOS
|a WOS:000270620500048
037 _ _ |a PreJuSER-10570
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Electrochemistry
084 _ _ |2 WoS
|a Energy & Fuels
100 1 _ |0 P:(DE-HGF)0
|a Lugovy, M.
|b 0
245 _ _ |a Microcracking in Electron-Beam Deposited Scandia-Stabilised Zirconia Electrolyte.
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2009
300 _ _ |a 950 - 960
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3727
|a Journal of Power Sources
|v 194
|x 0378-7753
|y 2
500 _ _ |a The work was supported by INTAS Grant No. 06-1000024-8748 "Structure Optimization of SOFC Based on Scandia Doped Zirconia Ceramics for Space Application". We thank Dr. L. Dubykivskyy, Mr. Y. Brodnikovskyy and Mr. M. Brychevskyy from Institute for Problems of Materials Science, Kiev, Ukraine for half-cell fabrication and annealing, Dr. P. Batfalsky, Forschungszentrum Juelich, Germany, for Scanning Electron Microscopy, Dr. J. Malzbender, Forschungszentrum Juelich, Germany, for biaxial bending tests, Dr. R.W. Steinbrech, Forschungszentrum Juelich, Germany for helpful discussion.
520 _ _ |a It is the aim of the present work to address some of the aspects of microcracking in electron beam deposited scandia-stabilised zirconia electrolyte applied for solid oxide fuel cells (SOFC) where a thin electrolyte layer is deposited on a relatively thick anode substrate. A model of microcracking for the electrolyte material is proposed which takes into account the statistical distribution of grain sizes, the stress redistribution due to failure of individual structural elements as well as the local criterion of grain fracture. The combination of electron microscopy research with model calculations permits both the specific energy of new surface creation in the electrolyte and critical parameters of the microcracking process to be determined. The annealing-induced electrolyte microcracking discussed in this work corresponds to localised microcracking, where each next structural element fails mainly at an existing microcrack tip. The features of localised microcracking in electron beam deposited scandia-stabilised zirconia electrolyte are analysed. (C) 2009 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK402
|2 G:(DE-HGF)
|a Rationelle Energieumwandlung
|c P12
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Microcracking
653 2 0 |2 Author
|a Residual stress
653 2 0 |2 Author
|a Scandia-stabilised zirconia
653 2 0 |2 Author
|a Electrolyte
653 2 0 |2 Author
|a Thermal expansion
653 2 0 |2 Author
|a Solid oxide fuel cell
700 1 _ |0 P:(DE-HGF)0
|a Slyunyayev, V.
|b 1
700 1 _ |0 P:(DE-Juel1)VDB9342
|a Steinberger-Wilckens, R.
|b 2
|u FZJ
773 _ _ |0 PERI:(DE-600)1491915-1
|a 10.1016/j.jpowsour.2009.05.024
|g Vol. 194, p. 950 - 960
|p 950 - 960
|q 194<950 - 960
|t Journal of power sources
|v 194
|x 0378-7753
|y 2009
856 7 _ |u http://dx.doi.org/10.1016/j.jpowsour.2009.05.024
909 C O |o oai:juser.fz-juelich.de:10570
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK402
|a DE-HGF
|b Energie
|k P12
|l Rationelle Energieumwandlung
|v Rationelle Energieumwandlung
|x 0
914 1 _ |a Nachtrag
|y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 30.09.2010
|g IEF
|k IEF-PBZ
|l Projekt Brennstoffzelle
|0 I:(DE-Juel1)VDB816
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)120952
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-9-2011021
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IEK-9-2011021
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21