001     10587
005     20240619091853.0
024 7 _ |2 pmid
|a pmid:20184308
024 7 _ |2 DOI
|a 10.1021/bc900470y
024 7 _ |2 WOS
|a WOS:000275711600016
024 7 _ |a altmetric:21804412
|2 altmetric
037 _ _ |a PreJuSER-10587
041 _ _ |a ENG
082 _ _ |a 540
084 _ _ |2 WoS
|a Biochemical Research Methods
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
084 _ _ |2 WoS
|a Chemistry, Multidisciplinary
084 _ _ |2 WoS
|a Chemistry, Organic
100 1 _ |a Csiszar, A.
|b 0
|u FZJ
|0 P:(DE-Juel1)128805
245 _ _ |a Novel Fusogenic Liposomes for Fluorescent Cell labeling and Membrane Modification
260 _ _ |a Columbus, Ohio
|b American Chemical Society
|c 2010
300 _ _ |a 537 - 543
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Bioconjugate Chemistry
|x 1043-1802
|0 22602
|y 3
|v 21
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Efficient delivery of biomolecules into membranes of living cells as well as cell surface modifications are major biotechnological challenges. Here, novel liposome systems based on neutral and cationic lipids in combination with lipids modified by aromatic groups are introduced for such applications. The fusion efficiency of these liposome systems was tested on single cells in culture like HEK293, myofibroblasts, cortical neurons, human macrophages, smooth muscle cells, and even on tissue. Fusogenic liposomes enabled highly efficient incorporation of molecules into mammalian cell membranes within 1 to 30 min at fully unchanged cell growth conditions and did not affect cell behavior. We hypothesize that membrane fusions were induced in all cases by the interaction of the positively charged lipids and the delocalized electron system of the aromatic group generating local dipoles and membrane instabilities. Selected applications ranging from basic research to biotechnology are envisaged here.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
536 _ _ |a Erneuerbare Energien
|c P11
|0 G:(DE-Juel1)FUEK401
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
700 1 _ |a Hersch, N.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB29396
700 1 _ |a Dieluweit, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB5493
700 1 _ |a Biehl, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)130542
700 1 _ |a Merkel, R.
|b 4
|u FZJ
|0 P:(DE-Juel1)128833
700 1 _ |a Hoffmann, B.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB27696
773 _ _ |a 10.1021/bc900470y
|g Vol. 21, p. 537 - 543
|p 537 - 543
|q 21<537 - 543
|0 PERI:(DE-600)1500067-9
|t Bioconjugate chemistry
|v 21
|y 2010
|x 1043-1802
856 7 _ |u http://dx.doi.org/10.1021/bc900470y
909 C O |o oai:juser.fz-juelich.de:10587
|p VDB
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 0
913 1 _ |k P11
|v Erneuerbare Energien
|l Erneuerbare Energien
|b Energie
|0 G:(DE-Juel1)FUEK401
|x 1
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBN-4
|l Biomechanik
|d 31.12.2010
|g IBN
|0 I:(DE-Juel1)VDB802
|x 0
920 1 _ |k IFF-5
|l Neutronenstreuung
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB785
|x 1
970 _ _ |a VDB:(DE-Juel1)120978
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)ICS-7-20110106
981 _ _ |a I:(DE-Juel1)ICS-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21