001     10588
005     20200402205851.0
024 7 _ |2 pmid
|a pmid:20355933
024 7 _ |2 DOI
|a 10.1021/la1005242
024 7 _ |2 WOS
|a WOS:000279239900087
037 _ _ |a PreJuSER-10588
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Chemistry, Multidisciplinary
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |a Dieluweit, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB5493
245 _ _ |a Mechanical Properties of Bare and Protein-Coated Giant Unilamellar Phospolipid Vesicles. A Comparative Study of Micropipet Aspiration and Atomic Force Microscopy
260 _ _ |a Washington, DC
|b ACS Publ.
|c 2010
300 _ _ |a 11041 - 11049
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Langmuir
|x 0743-7463
|0 4081
|y 13
|v 26
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a In this study, protein-coated giant phospholipid vesicles were used to model cell plasma membranes coated by surface protein layers that increase membrane stiffness under mechanical or osmotic stress. These changed mechanical properties like bending stiffness, membrane area compressibility modulus, and effective Young's modulus were determined by micropipet aspiration, while bending stiffness, effective Young's modulus, and effective spring constant of vesicles were analyzed by AFM. The experimental setups, the applied models, and the results using both methods were compared here. As demonstrated before, we found that bare vesicles were best probed by micropipet aspiration due to its high sensitivity. The mechanical properties of vesicles with protein surface layers were, however, better determined by AFM because it enables very local deformations of the membrane with barely any structural damage to the protein layer. Mechanical properties of different species of coating proteins, here streptavidin and avidin, could be clearly distinguished using this technique.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Mechanics
650 _ 2 |2 MeSH
|a Microscopy, Atomic Force
650 _ 2 |2 MeSH
|a Models, Theoretical
650 _ 2 |2 MeSH
|a Phospholipids: chemistry
650 _ 2 |2 MeSH
|a Unilamellar Liposomes: chemistry
650 _ 7 |0 0
|2 NLM Chemicals
|a Phospholipids
650 _ 7 |0 0
|2 NLM Chemicals
|a Unilamellar Liposomes
650 _ 7 |a J
|2 WoSType
700 1 _ |a Csiszar, A.
|b 1
|u FZJ
|0 P:(DE-Juel1)128805
700 1 _ |a Rubner, W.
|b 2
|u FZJ
|0 P:(DE-Juel1)128837
700 1 _ |a Fleischhauer, J.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB19661
700 1 _ |a Houben, S.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB87855
700 1 _ |a Merkel, R.
|b 5
|u FZJ
|0 P:(DE-Juel1)128833
773 _ _ |a 10.1021/la1005242
|g Vol. 26, p. 11041 - 11049
|p 11041 - 11049
|q 26<11041 - 11049
|0 PERI:(DE-600)2005937-1
|t Langmuir
|v 26
|y 2010
|x 0743-7463
856 7 _ |u http://dx.doi.org/10.1021/la1005242
909 C O |o oai:juser.fz-juelich.de:10588
|p VDB
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBN-4
|l Biomechanik
|d 31.12.2010
|g IBN
|0 I:(DE-Juel1)VDB802
|x 0
970 _ _ |a VDB:(DE-Juel1)120979
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)ICS-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21