000010597 001__ 10597 000010597 005__ 20200402205851.0 000010597 0247_ $$2DOI$$a10.1016/j.susc.2010.10.025 000010597 0247_ $$2WOS$$aWOS:000286021000034 000010597 037__ $$aPreJuSER-10597 000010597 041__ $$aeng 000010597 082__ $$a540 000010597 084__ $$2WoS$$aChemistry, Physical 000010597 084__ $$2WoS$$aPhysics, Condensed Matter 000010597 1001_ $$0P:(DE-Juel1)VDB5414$$aIbach, H.$$b0$$uFZJ 000010597 245__ $$aInterface capacitance of nano-patterned electrodes 000010597 260__ $$aAmsterdam$$bElsevier$$c2011 000010597 300__ $$a 000010597 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000010597 3367_ $$2DataCite$$aOutput Types/Journal article 000010597 3367_ $$00$$2EndNote$$aJournal Article 000010597 3367_ $$2BibTeX$$aARTICLE 000010597 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000010597 3367_ $$2DRIVER$$aarticle 000010597 440_0 $$05673$$aSurface Science$$v605$$x0039-6028$$y1 000010597 500__ $$aRecord converted from VDB: 12.11.2012 000010597 520__ $$aBy employing numerical solutions of the Poisson-Boltzmann equation we have studied the interface capacitance of flat electrodes with stripes of different potentials of zero charge phi(pzc). The results depend on the ratio of the width of the stripes l to the dielectric screening length in the electrolyte, the Debye length d(Debye), as well as on the difference Delta phi(pzc), in relation k(B)T/e. As expected, the capacitance of a striped surface has its minimum at the mean potential of the surface if l/d(Debye)<< 1 and displays two minima if l/d(Debye)>> 1. An unexpected result is that for Delta phi(pzc)congruent to 0.2V, the transition between the two extreme cases does not occur when l congruent to d(Debye). but rather when l>10d(Debye). As a consequence, a single minimum in the capacitance is observed for dilute electrolytes even for 100 nm wide stripes. The capacitance at the minimum is however higher than for homogeneous surfaces. Furthermore, the potential at the minimum deviates significantly from the potential of zero mean charge on the surface if l>3d(Debye) and Delta phi(pzc) is larger than about 4k(B)T/e. The capacitance of stepped, partially reconstructed Au(11n) surfaces is discussed as an example. Consequences for Parsons-Zobel-plots of the capacitances of inhomogeneous surfaces are likewise discussed. (C) 2010 Elsevier B.V. All rights reserved. 000010597 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0 000010597 588__ $$aDataset connected to Web of Science 000010597 650_7 $$2WoSType$$aJ 000010597 65320 $$2Author$$aMetal-electrolyte interface 000010597 65320 $$2Author$$aNano-structured surfaces 000010597 65320 $$2Author$$aDielectric properties 000010597 7001_ $$0P:(DE-Juel1)128800$$aBeltramo, G. L.$$b1$$uFZJ 000010597 7001_ $$0P:(DE-Juel1)4744$$aGiesen, M.$$b2$$uFZJ 000010597 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2010.10.025$$gVol. 605$$q605$$tSurface science$$v605$$x0039-6028$$y2011 000010597 8567_ $$uhttp://dx.doi.org/10.1016/j.susc.2010.10.025 000010597 909CO $$ooai:juser.fz-juelich.de:10597$$pVDB 000010597 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0 000010597 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000010597 9141_ $$y2011 000010597 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000010597 9201_ $$0I:(DE-Juel1)VDB802$$d31.12.2010$$gIBN$$kIBN-4$$lBiomechanik$$x0 000010597 970__ $$aVDB:(DE-Juel1)120990 000010597 980__ $$aVDB 000010597 980__ $$aConvertedRecord 000010597 980__ $$ajournal 000010597 980__ $$aI:(DE-Juel1)ICS-7-20110106 000010597 980__ $$aUNRESTRICTED 000010597 981__ $$aI:(DE-Juel1)IBI-2-20200312 000010597 981__ $$aI:(DE-Juel1)ICS-7-20110106