001     10597
005     20200402205851.0
024 7 _ |2 DOI
|a 10.1016/j.susc.2010.10.025
024 7 _ |2 WOS
|a WOS:000286021000034
037 _ _ |a PreJuSER-10597
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Ibach, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB5414
245 _ _ |a Interface capacitance of nano-patterned electrodes
260 _ _ |a Amsterdam
|b Elsevier
|c 2011
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Surface Science
|x 0039-6028
|0 5673
|y 1
|v 605
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a By employing numerical solutions of the Poisson-Boltzmann equation we have studied the interface capacitance of flat electrodes with stripes of different potentials of zero charge phi(pzc). The results depend on the ratio of the width of the stripes l to the dielectric screening length in the electrolyte, the Debye length d(Debye), as well as on the difference Delta phi(pzc), in relation k(B)T/e. As expected, the capacitance of a striped surface has its minimum at the mean potential of the surface if l/d(Debye)<< 1 and displays two minima if l/d(Debye)>> 1. An unexpected result is that for Delta phi(pzc)congruent to 0.2V, the transition between the two extreme cases does not occur when l congruent to d(Debye). but rather when l>10d(Debye). As a consequence, a single minimum in the capacitance is observed for dilute electrolytes even for 100 nm wide stripes. The capacitance at the minimum is however higher than for homogeneous surfaces. Furthermore, the potential at the minimum deviates significantly from the potential of zero mean charge on the surface if l>3d(Debye) and Delta phi(pzc) is larger than about 4k(B)T/e. The capacitance of stepped, partially reconstructed Au(11n) surfaces is discussed as an example. Consequences for Parsons-Zobel-plots of the capacitances of inhomogeneous surfaces are likewise discussed. (C) 2010 Elsevier B.V. All rights reserved.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Metal-electrolyte interface
653 2 0 |2 Author
|a Nano-structured surfaces
653 2 0 |2 Author
|a Dielectric properties
700 1 _ |a Beltramo, G. L.
|b 1
|u FZJ
|0 P:(DE-Juel1)128800
700 1 _ |a Giesen, M.
|b 2
|u FZJ
|0 P:(DE-Juel1)4744
773 _ _ |a 10.1016/j.susc.2010.10.025
|g Vol. 605
|q 605
|0 PERI:(DE-600)1479030-0
|t Surface science
|v 605
|y 2011
|x 0039-6028
856 7 _ |u http://dx.doi.org/10.1016/j.susc.2010.10.025
909 C O |o oai:juser.fz-juelich.de:10597
|p VDB
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBN-4
|l Biomechanik
|d 31.12.2010
|g IBN
|0 I:(DE-Juel1)VDB802
|x 0
970 _ _ |a VDB:(DE-Juel1)120990
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)ICS-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21