000010735 001__ 10735
000010735 005__ 20240708132733.0
000010735 0247_ $$2pmid$$apmid:19961958
000010735 0247_ $$2DOI$$a10.1016/j.actbio.2009.11.032
000010735 0247_ $$2WOS$$aWOS:000278250100055
000010735 037__ $$aPreJuSER-10735
000010735 041__ $$aeng
000010735 082__ $$a570
000010735 084__ $$2WoS$$aEngineering, Biomedical
000010735 084__ $$2WoS$$aMaterials Science, Biomaterials
000010735 1001_ $$0P:(DE-HGF)0$$aSingh, R.$$b0
000010735 245__ $$aCharacterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modelling
000010735 260__ $$aBerlin$$bWiley VCH$$c2010
000010735 300__ $$a2342 - 2351
000010735 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010735 3367_ $$2DataCite$$aOutput Types/Journal article
000010735 3367_ $$00$$2EndNote$$aJournal Article
000010735 3367_ $$2BibTeX$$aARTICLE
000010735 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010735 3367_ $$2DRIVER$$aarticle
000010735 440_0 $$08163$$aActa Biotechnologica$$v6$$x0138-4988$$y6
000010735 500__ $$aThe authors acknowledge the useful discussions and assistance of R.C. Atwood and R. Hamilton with the mu CT studies. Andreas Fritsch (Technische Universitat Wien) is gratefully acknowledged for his assistance with the continuum micromechanics modeling. We thank the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities and especially the team of beam line ID19. We would also like to thank the EPSRC (GR/T26344) for support for the computational facilities and one of the authors (R.S.) gratefully acknowledges financial support from the EC under a Marie Curie Fellowship Grant.
000010735 520__ $$aUnder load-bearing conditions metal-based foam scaffolds are currently the preferred choice as bone/cartilage implants. In this study X-ray micro-computed tomography was used to discretize the three-dimensional structure of a commercial titanium foam used in spinal fusion devices. Direct finite element modeling, continuum micromechanics and analytical models of the foam were employed to characterize the elasto-plastic deformation behavior. These results were validated against experimental measurements, including ultrasound and monotonic and interrupted compression testing. Interrupted compression tests demonstrated localized collapse of pores unfavorably oriented with respect to the loading direction at many isolated locations, unlike the Ashby model, in which pores collapse row by row. A principal component analysis technique was developed to quantify the pore anisotropy which was then related to the yield stress anisotropy, indicating which isolated pores will collapse first. The Gibson-Ashby model was extended to incorporate this anisotropy by considering an orthorhombic, rather than a tetragonal, unit cell. It is worth noting that the natural bone is highly anisotropic and there is a need to develop and characterize anisotropic implants that mimic bone characteristics.
000010735 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000010735 588__ $$aDataset connected to Web of Science, Pubmed
000010735 65320 $$2Author$$aTitanium foam
000010735 65320 $$2Author$$aPorous materials
000010735 65320 $$2Author$$aFinite element modeling
000010735 65320 $$2Author$$aX-ray micro-tomography
000010735 65320 $$2Author$$aBiomaterials
000010735 650_2 $$2MeSH$$aBiocompatible Materials: chemistry
000010735 650_2 $$2MeSH$$aComputer Simulation
000010735 650_2 $$2MeSH$$aElastic Modulus
000010735 650_2 $$2MeSH$$aFinite Element Analysis
000010735 650_2 $$2MeSH$$aGases: chemistry
000010735 650_2 $$2MeSH$$aHardness
000010735 650_2 $$2MeSH$$aMaterials Testing
000010735 650_2 $$2MeSH$$aModels, Chemical
000010735 650_2 $$2MeSH$$aStress, Mechanical
000010735 650_2 $$2MeSH$$aTitanium: chemistry
000010735 650_2 $$2MeSH$$aTomography, X-Ray Computed: methods
000010735 650_7 $$00$$2NLM Chemicals$$aBiocompatible Materials
000010735 650_7 $$00$$2NLM Chemicals$$aGases
000010735 650_7 $$07440-32-6$$2NLM Chemicals$$aTitanium
000010735 650_7 $$2WoSType$$aJ
000010735 7001_ $$0P:(DE-HGF)0$$aLee, P.D.$$b1
000010735 7001_ $$0P:(DE-HGF)0$$aLindley, T.C.$$b2
000010735 7001_ $$0P:(DE-HGF)0$$aHellmich, C$$b3
000010735 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b4$$uFZJ
000010735 7001_ $$0P:(DE-HGF)0$$aImwinkelried, T.$$b5
000010735 7001_ $$0P:(DE-HGF)0$$aDashwood, R.J.$$b6
000010735 773__ $$0PERI:(DE-600)2044639-1$$a10.1016/j.actbio.2009.11.032$$gVol. 6, p. 2342 - 2351$$p2342 - 2351$$q6<2342 - 2351$$tActa biotechnologica$$v6$$x0138-4988$$y2010
000010735 8567_ $$uhttp://dx.doi.org/10.1016/j.actbio.2009.11.032
000010735 909CO $$ooai:juser.fz-juelich.de:10735$$pVDB
000010735 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010735 9141_ $$y2010
000010735 9131_ $$0G:(DE-Juel1)FUEK402$$aDE-HGF$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000010735 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000010735 9201_ $$0I:(DE-Juel1)VDB809$$d30.09.2010$$gIEF$$kIEF-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000010735 970__ $$aVDB:(DE-Juel1)121253
000010735 980__ $$aVDB
000010735 980__ $$aConvertedRecord
000010735 980__ $$ajournal
000010735 980__ $$aI:(DE-Juel1)IEK-1-20101013
000010735 980__ $$aUNRESTRICTED
000010735 981__ $$aI:(DE-Juel1)IMD-2-20101013
000010735 981__ $$aI:(DE-Juel1)IEK-1-20101013