001     10744
005     20210129210525.0
024 7 _ |2 pmid
|a pmid:20570742
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2010.05.080
024 7 _ |2 WOS
|a WOS:000280818900032
024 7 _ |a altmetric:3334782
|2 altmetric
037 _ _ |a PreJuSER-10744
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |0 P:(DE-HGF)0
|a Santos, N.
|b 0
245 _ _ |a Animated brain: A functional neuroimaging study on animacy experience
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2010
300 _ _ |a 291 - 302
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4545
|a NeuroImage
|v 53
|x 1053-8119
|y 1
500 _ _ |a We would like to thank Barbara Elghahwagi and Cordula Kemper for their assistance with the fMRI scanning; Carolin Aumann for help with the subject's recruitment; and Bettina Bewernick, Alexandra Georgescu, Astrid Gawronski, Hanna Kockler, Leonhard Schilbach, and Ralf Tepest for their valuable comments on the study. This work was supported by the German Volkswagen-Stiftung (Kai Vogeley) and the Portuguese scientific foundation Fundacao para a Ciencia e Tecnologia (FCT), the latest in the form of a fellowship to Natacha Santos.
520 _ _ |a Previous research used animated geometric figures to investigate social cognitive processes involved in ascribing mental states to others (e.g. mentalizing). The relationship between animacy perception and brain areas commonly involved in social cognition, as well as the influence of particular motion patterns on animacy experience, however, remains to be further elucidated. We used a recently introduced paradigm for the systematic variation of motion properties, and employed functional magnetic resonance imaging to identify the neural mechanisms underlying animacy experience. Based on individual ratings of increased animacy experience the following brain regions of the "social neural network" (SNN), known to be involved in social cognitive processes, were recruited: insula, superior temporal gyrus, fusiform gyrus, parahippocampal gyrus and the ventromedial prefrontal cortex bilaterally. Decreased animacy experience was associated with increased neural activity in the inferior parietal and inferior frontal gyrus, key constituents of the human "mirror neuron system" (hMNS). These findings were corroborated when analyses were based on movement patterns alone, irrespective of subjective experience. Additionally to the areas found for increased animacy experience, an increase in interactive movements elicited activity in the amygdala and the temporal pole. In conclusion, the results suggest that the hMNS is recruited during a low-level stage of animacy judgment representing a basic disposition to detect the salience of movements, whereas the SNN appears to be a high-level processing component serving evaluation in social and mental inference.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89572
|a 89572 - (Dys-)function and Plasticity (POF2-89572)
|c POF2-89572
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Brain: physiology
650 _ 2 |2 MeSH
|a Cognition: physiology
650 _ 2 |2 MeSH
|a Cues
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Motion Perception: physiology
650 _ 2 |2 MeSH
|a Photic Stimulation: methods
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Animacy
653 2 0 |2 Author
|a Insula
653 2 0 |2 Author
|a Mentalizing
653 2 0 |2 Author
|a Mirror neuron system (MNS)
653 2 0 |2 Author
|a Social neural network (SNN)
653 2 0 |2 Author
|a Superior temporal sulcus
653 2 0 |2 Author
|a Orbitofrontal cortex
653 2 0 |2 Author
|a Ventromedial prefrontal cortex
700 1 _ |0 P:(DE-Juel1)144165
|a Kuzmanovic, B.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a David, N.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Rotarska-Jagiela, A.
|b 3
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S. B.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)131794
|a Shah, J. N.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)131720
|a Fink, G. R.
|b 6
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Bente, G.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Vogeley, K:
|b 8
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2010.05.080
|g Vol. 53, p. 291 - 302
|p 291 - 302
|q 53<291 - 302
|t NeuroImage
|v 53
|x 1053-8119
|y 2010
856 7 _ |u http://dx.doi.org/10.1016/j.neuroimage.2010.05.080
909 C O |o oai:juser.fz-juelich.de:10744
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-572
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v (Dys-)function and Plasticity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89572
|a DE-HGF
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|g INM
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|g INM
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 2
970 _ _ |a VDB:(DE-Juel1)121263
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-2-20090406
981 _ _ |a I:(DE-Juel1)INM-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21