000010806 001__ 10806
000010806 005__ 20190625111125.0
000010806 0247_ $$2DOI$$a10.1002/cmr.a.20165
000010806 0247_ $$2WOS$$aWOS:000280624700001
000010806 0247_ $$2altmetric$$aaltmetric:21804494
000010806 037__ $$aPreJuSER-10806
000010806 041__ $$aeng
000010806 082__ $$a530
000010806 084__ $$2WoS$$aChemistry, Physical
000010806 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000010806 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000010806 084__ $$2WoS$$aSpectroscopy
000010806 1001_ $$0P:(DE-HGF)0$$aSoltner, H.$$b0
000010806 245__ $$aDipolar Halbach Magnet Stacks Made from Identically Shaped Permanent Magnets for Magnetic Resonance
000010806 260__ $$aChichester [u.a.]$$bWiley$$c2010
000010806 300__ $$a211 - 222
000010806 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010806 3367_ $$2DataCite$$aOutput Types/Journal article
000010806 3367_ $$00$$2EndNote$$aJournal Article
000010806 3367_ $$2BibTeX$$aARTICLE
000010806 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010806 3367_ $$2DRIVER$$aarticle
000010806 440_0 $$022681$$aConcepts in Magnetic Resonance Part A$$v36A$$x1043-7347$$y4
000010806 500__ $$aThe authors would like to thank the following persons at FZJ for their support and help in designing and constructing the magnets and for fruitful discussions. Axel Dahmen, Dagmar van Dusschoten, Harald Gluckler, Normen Hermes, Johannes Kochs, Marion Menzel, Elmar Mommertz, Uli Schurr, and Carel Windt.
000010806 520__ $$aNMR Mandhalas (Magnetic Arrangement for Novel Discrete Halbach LAyout) are arrays of identically shaped magnets in a Halbach-type arrangement. They provide a simple and cost-effective way to generate high magnetic fields for mobile applications, for example, in magnetic resonance. Based on the introductory publication by Raich and Blumler (Concepts Magn Reson 2004;23B:16-25), we extend the notion of Mandhalas from cube-shaped magnets to polygonal and cylindrical ones and present construction guidelines for the stacking of such rings to generate homogeneous magnetic fields over larger volumes. For this purpose, we present formulas and numerical values based on a dipole approach to calculate the flux density of single rings and composed 3D systems and compare to corresponding results obtained by 3D boundary element method calculations. As an application of the approach presented here, we constructed prototypes. (C) 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part A 36A: 211-222, 2010.
000010806 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000010806 588__ $$aDataset connected to Web of Science
000010806 650_7 $$2WoSType$$aJ
000010806 65320 $$2Author$$ahomogeneity
000010806 65320 $$2Author$$aNMR
000010806 65320 $$2Author$$aMRI
000010806 65320 $$2Author$$aEPR
000010806 65320 $$2Author$$aESR
000010806 65320 $$2Author$$aMandhala
000010806 65320 $$2Author$$amagic ring
000010806 65320 $$2Author$$aportable
000010806 65320 $$2Author$$amobile
000010806 65320 $$2Author$$apermanent magnet
000010806 7001_ $$0P:(DE-Juel1)VDB49819$$aBlümler, P.$$b1$$uFZJ
000010806 773__ $$0PERI:(DE-600)1500222-6$$a10.1002/cmr.a.20165$$gVol. 36A, p. 211 - 222$$p211 - 222$$q36A<211 - 222$$tConcepts in magnetic resonance / A$$v36A$$x1043-7347$$y2010
000010806 8567_ $$uhttp://dx.doi.org/10.1002/cmr.a.20165
000010806 909CO $$ooai:juser.fz-juelich.de:10806$$pVDB
000010806 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000010806 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000010806 9141_ $$y2010
000010806 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010806 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000010806 970__ $$aVDB:(DE-Juel1)121381
000010806 980__ $$aVDB
000010806 980__ $$aConvertedRecord
000010806 980__ $$ajournal
000010806 980__ $$aI:(DE-Juel1)IBG-2-20101118
000010806 980__ $$aUNRESTRICTED
000010806 981__ $$aI:(DE-Juel1)IBG-2-20101118
000010806 981__ $$aI:(DE-Juel1)ICG-3-20090406