001     10806
005     20190625111125.0
024 7 _ |2 DOI
|a 10.1002/cmr.a.20165
024 7 _ |2 WOS
|a WOS:000280624700001
024 7 _ |a altmetric:21804494
|2 altmetric
037 _ _ |a PreJuSER-10806
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
084 _ _ |2 WoS
|a Spectroscopy
100 1 _ |a Soltner, H.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Dipolar Halbach Magnet Stacks Made from Identically Shaped Permanent Magnets for Magnetic Resonance
260 _ _ |a Chichester [u.a.]
|b Wiley
|c 2010
300 _ _ |a 211 - 222
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Concepts in Magnetic Resonance Part A
|x 1043-7347
|0 22681
|y 4
|v 36A
500 _ _ |a The authors would like to thank the following persons at FZJ for their support and help in designing and constructing the magnets and for fruitful discussions. Axel Dahmen, Dagmar van Dusschoten, Harald Gluckler, Normen Hermes, Johannes Kochs, Marion Menzel, Elmar Mommertz, Uli Schurr, and Carel Windt.
520 _ _ |a NMR Mandhalas (Magnetic Arrangement for Novel Discrete Halbach LAyout) are arrays of identically shaped magnets in a Halbach-type arrangement. They provide a simple and cost-effective way to generate high magnetic fields for mobile applications, for example, in magnetic resonance. Based on the introductory publication by Raich and Blumler (Concepts Magn Reson 2004;23B:16-25), we extend the notion of Mandhalas from cube-shaped magnets to polygonal and cylindrical ones and present construction guidelines for the stacking of such rings to generate homogeneous magnetic fields over larger volumes. For this purpose, we present formulas and numerical values based on a dipole approach to calculate the flux density of single rings and composed 3D systems and compare to corresponding results obtained by 3D boundary element method calculations. As an application of the approach presented here, we constructed prototypes. (C) 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part A 36A: 211-222, 2010.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a homogeneity
653 2 0 |2 Author
|a NMR
653 2 0 |2 Author
|a MRI
653 2 0 |2 Author
|a EPR
653 2 0 |2 Author
|a ESR
653 2 0 |2 Author
|a Mandhala
653 2 0 |2 Author
|a magic ring
653 2 0 |2 Author
|a portable
653 2 0 |2 Author
|a mobile
653 2 0 |2 Author
|a permanent magnet
700 1 _ |a Blümler, P.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB49819
773 _ _ |a 10.1002/cmr.a.20165
|g Vol. 36A, p. 211 - 222
|p 211 - 222
|q 36A<211 - 222
|0 PERI:(DE-600)1500222-6
|t Concepts in magnetic resonance / A
|v 36A
|y 2010
|x 1043-7347
856 7 _ |u http://dx.doi.org/10.1002/cmr.a.20165
909 C O |o oai:juser.fz-juelich.de:10806
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-3
|l Phytosphäre
|d 31.10.2010
|g ICG
|0 I:(DE-Juel1)ICG-3-20090406
|x 1
970 _ _ |a VDB:(DE-Juel1)121381
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ICG-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21