000010819 001__ 10819 000010819 005__ 20200423202808.0 000010819 0247_ $$2pmid$$apmid:20059049 000010819 0247_ $$2DOI$$a10.1063/1.3264952 000010819 0247_ $$2WOS$$aWOS:000273217000007 000010819 0247_ $$2Handle$$a2128/19496 000010819 037__ $$aPreJuSER-10819 000010819 041__ $$aeng 000010819 082__ $$a540 000010819 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical 000010819 1001_ $$0P:(DE-Juel1)132079$$aDachsel, H.$$b0$$uFZJ 000010819 245__ $$aAn error-controlled fast multipole method 000010819 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2009 000010819 300__ $$a244102 000010819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000010819 3367_ $$2DataCite$$aOutput Types/Journal article 000010819 3367_ $$00$$2EndNote$$aJournal Article 000010819 3367_ $$2BibTeX$$aARTICLE 000010819 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000010819 3367_ $$2DRIVER$$aarticle 000010819 440_0 $$03145$$aJournal of Chemical Physics$$v131$$x0021-9606$$y24 000010819 500__ $$aRecord converted from VDB: 12.11.2012 000010819 520__ $$aWe present a two-stage error estimation scheme for the fast multipole method (FMM). This scheme can be applied to any particle system. It incorporates homogeneous as well as inhomogeneous distributions. The FMM error as a consequence of the finite representation of the multipole expansions and the operator error is correlated with an absolute or relative user-requested energy threshold. Such a reliable error control is the basis for making reliable simulations in computational physics. Our FMM program on the basis of the two-stage error estimation scheme is available on request. 000010819 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0 000010819 536__ $$0G:(DE-Juel1)FMM-20140729$$aMethoden und Systeme der Informationstechnik$$cFMM-20140729$$x1 000010819 588__ $$aDataset connected to Web of Science, Pubmed 000010819 650_7 $$2WoSType$$aJ 000010819 65320 $$2Author$$aintermolecular mechanics 000010819 65320 $$2Author$$aplasma-beam interactions 000010819 65320 $$2Author$$apotential energy functions 000010819 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.3264952$$gVol. 131, p. 244102$$p244102$$q131<244102$$tThe @journal of chemical physics$$v131$$x0021-9606$$y2009 000010819 8567_ $$uhttp://dx.doi.org/10.1063/1.3264952 000010819 8564_ $$uhttps://juser.fz-juelich.de/record/10819/files/1.3264952.pdf$$yOpenAccess 000010819 8564_ $$uhttps://juser.fz-juelich.de/record/10819/files/1.3264952.gif?subformat=icon$$xicon$$yOpenAccess 000010819 8564_ $$uhttps://juser.fz-juelich.de/record/10819/files/1.3264952.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000010819 8564_ $$uhttps://juser.fz-juelich.de/record/10819/files/1.3264952.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000010819 8564_ $$uhttps://juser.fz-juelich.de/record/10819/files/1.3264952.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000010819 909CO $$ooai:juser.fz-juelich.de:10819$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000010819 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0 000010819 9141_ $$y2009 000010819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000010819 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000010819 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0 000010819 970__ $$aVDB:(DE-Juel1)121404 000010819 980__ $$aVDB 000010819 980__ $$aConvertedRecord 000010819 980__ $$ajournal 000010819 980__ $$aI:(DE-Juel1)JSC-20090406 000010819 980__ $$aUNRESTRICTED 000010819 9801_ $$aFullTexts