000010819 001__ 10819
000010819 005__ 20200423202808.0
000010819 0247_ $$2pmid$$apmid:20059049
000010819 0247_ $$2DOI$$a10.1063/1.3264952
000010819 0247_ $$2WOS$$aWOS:000273217000007
000010819 0247_ $$2Handle$$a2128/19496
000010819 037__ $$aPreJuSER-10819
000010819 041__ $$aeng
000010819 082__ $$a540
000010819 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000010819 1001_ $$0P:(DE-Juel1)132079$$aDachsel, H.$$b0$$uFZJ
000010819 245__ $$aAn error-controlled fast multipole method
000010819 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2009
000010819 300__ $$a244102
000010819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010819 3367_ $$2DataCite$$aOutput Types/Journal article
000010819 3367_ $$00$$2EndNote$$aJournal Article
000010819 3367_ $$2BibTeX$$aARTICLE
000010819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010819 3367_ $$2DRIVER$$aarticle
000010819 440_0 $$03145$$aJournal of Chemical Physics$$v131$$x0021-9606$$y24
000010819 500__ $$aRecord converted from VDB: 12.11.2012
000010819 520__ $$aWe present a two-stage error estimation scheme for the fast multipole method (FMM). This scheme can be applied to any particle system. It incorporates homogeneous as well as inhomogeneous distributions. The FMM error as a consequence of the finite representation of the multipole expansions and the operator error is correlated with an absolute or relative user-requested energy threshold. Such a reliable error control is the basis for making reliable simulations in computational physics. Our FMM program on the basis of the two-stage error estimation scheme is available on request.
000010819 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000010819 536__ $$0G:(DE-Juel1)FMM-20140729$$aMethoden und Systeme der Informationstechnik$$cFMM-20140729$$x1
000010819 588__ $$aDataset connected to Web of Science, Pubmed
000010819 650_7 $$2WoSType$$aJ
000010819 65320 $$2Author$$aintermolecular mechanics
000010819 65320 $$2Author$$aplasma-beam interactions
000010819 65320 $$2Author$$apotential energy functions
000010819 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.3264952$$gVol. 131, p. 244102$$p244102$$q131<244102$$tThe @journal of chemical physics$$v131$$x0021-9606$$y2009
000010819 8567_ $$uhttp://dx.doi.org/10.1063/1.3264952
000010819 8564_ $$uhttps://juser.fz-juelich.de/record/10819/files/1.3264952.pdf$$yOpenAccess
000010819 8564_ $$uhttps://juser.fz-juelich.de/record/10819/files/1.3264952.gif?subformat=icon$$xicon$$yOpenAccess
000010819 8564_ $$uhttps://juser.fz-juelich.de/record/10819/files/1.3264952.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000010819 8564_ $$uhttps://juser.fz-juelich.de/record/10819/files/1.3264952.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000010819 8564_ $$uhttps://juser.fz-juelich.de/record/10819/files/1.3264952.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000010819 909CO $$ooai:juser.fz-juelich.de:10819$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000010819 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000010819 9141_ $$y2009
000010819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000010819 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010819 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000010819 970__ $$aVDB:(DE-Juel1)121404
000010819 980__ $$aVDB
000010819 980__ $$aConvertedRecord
000010819 980__ $$ajournal
000010819 980__ $$aI:(DE-Juel1)JSC-20090406
000010819 980__ $$aUNRESTRICTED
000010819 9801_ $$aFullTexts