000010889 001__ 10889
000010889 005__ 20240610120148.0
000010889 0247_ $$2pmid$$apmid:20712984
000010889 0247_ $$2pmc$$apmc:PMC2920720
000010889 0247_ $$2DOI$$a10.1016/j.bpj.2010.05.015
000010889 0247_ $$2WOS$$aWOS:000281103200004
000010889 0247_ $$2altmetric$$aaltmetric:1969474
000010889 037__ $$aPreJuSER-10889
000010889 041__ $$aeng
000010889 082__ $$a570
000010889 084__ $$2WoS$$aBiophysics
000010889 1001_ $$0P:(DE-Juel1)130629$$aElgeti, J.$$b0$$uFZJ
000010889 245__ $$aHydrodynamics of Sperm Cells near Surfaces
000010889 260__ $$aNew York, NY$$bRockefeller Univ. Press$$c2010
000010889 300__ $$a1018 - 1026
000010889 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010889 3367_ $$2DataCite$$aOutput Types/Journal article
000010889 3367_ $$00$$2EndNote$$aJournal Article
000010889 3367_ $$2BibTeX$$aARTICLE
000010889 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010889 3367_ $$2DRIVER$$aarticle
000010889 440_0 $$0882$$aBiophysical Journal$$v99$$x0006-3495$$y4
000010889 500__ $$aRecord converted from VDB: 12.11.2012
000010889 520__ $$aSperm are propelled by an actively beating tail, and display a wide variety of swimming patterns. When confined between two parallel walls, sperm swim either in circles or on curvilinear trajectories close to the walls. We employ mesoscale hydrodynamics simulations in combination with a mechanical sperm model to study the swimming behavior near walls. The simulations show that sperm become captured at the wall due to the hydrodynamic flow fields which are generated by the flagellar beat. The circular trajectories are determined by the chiral asymmetry of the sperm shape. For strong (weak) chirality, sperm swim in tight (wide) circles, with the beating plane of the flagellum oriented perpendicular (parallel) to the wall. For comparison, we also perform simulations based on a local anisotropic friction of the flagellum. In this resistive force approximation, surface adhesion and circular swimming patterns are obtained as well. However, the adhesion mechanism is now due to steric repulsion, and the orientation of the beating plane is different. Our model provides a theoretical framework that explains several distinct swimming behaviors of sperm near and far from a wall. Moreover, the model suggests a mechanism by which sperm navigate in a chemical gradient via a change of their shape.
000010889 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000010889 588__ $$aDataset connected to Web of Science, Pubmed
000010889 650_2 $$2MeSH$$aAnimals
000010889 650_2 $$2MeSH$$aAnisotropy
000010889 650_2 $$2MeSH$$aBiomechanics: physiology
000010889 650_2 $$2MeSH$$aCell Adhesion: physiology
000010889 650_2 $$2MeSH$$aElasticity
000010889 650_2 $$2MeSH$$aFriction
000010889 650_2 $$2MeSH$$aMale
000010889 650_2 $$2MeSH$$aModels, Biological
000010889 650_2 $$2MeSH$$aRotation
000010889 650_2 $$2MeSH$$aSperm Motility: physiology
000010889 650_2 $$2MeSH$$aSperm Tail: physiology
000010889 650_2 $$2MeSH$$aSpermatozoa: cytology
000010889 650_2 $$2MeSH$$aSpermatozoa: physiology
000010889 650_2 $$2MeSH$$aSurface Properties
000010889 650_7 $$2WoSType$$aJ
000010889 7001_ $$0P:(DE-Juel1)VDB728$$aKaupp, U. B.$$b1$$uFZJ
000010889 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b2$$uFZJ
000010889 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2010.05.015$$gVol. 99, p. 1018 - 1026$$p1018 - 1026$$q99<1018 - 1026$$tBiophysical journal$$v99$$x0006-3495$$y2010
000010889 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920720
000010889 909CO $$ooai:juser.fz-juelich.de:10889$$pVDB
000010889 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000010889 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft  Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000010889 9141_ $$y2010
000010889 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010889 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0
000010889 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$gIAS$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1$$zIFF-2
000010889 970__ $$aVDB:(DE-Juel1)121548
000010889 980__ $$aVDB
000010889 980__ $$aConvertedRecord
000010889 980__ $$ajournal
000010889 980__ $$aI:(DE-Juel1)ICS-2-20110106
000010889 980__ $$aI:(DE-Juel1)IAS-2-20090406
000010889 980__ $$aUNRESTRICTED
000010889 981__ $$aI:(DE-Juel1)IBI-5-20200312
000010889 981__ $$aI:(DE-Juel1)IAS-2-20090406
000010889 981__ $$aI:(DE-Juel1)ICS-2-20110106
000010889 981__ $$aI:(DE-Juel1)IAS-2-20090406