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a b s t r a c t

Recent investigations of long-distance transport in plants using non-invasive tracer techniques such as 11C

radiolabeling monitored by positron emission tomography (PET) combined with magnetic resonance

imaging (MRI) revealed the need of dedicated methods to allow a quantitative data analysis and

comparison of such experiments. A mechanistic compartmental tracer transport model is presented,

defined by a linear system of partial differential equations (PDEs). This model simplifies the complexity of

axial transport and lateral exchanges in the transport pathways of plants (e.g. the phloem) by simulating

transport and reversible exchange within three compartments using just a few parameters which are

considered to be constant in space and time. For this system of PDEs an analytical solution in Fourier-space

was found allowing a fast and numerically precise evaluation. From the steady-state behavior of the model,

the system loss (steadily fixed tracer along the transport conduits) was derived as an additional parameter

that can be readily interpreted in a physiological way. The presented framework allows the model to be

fitted to spatio-temporal tracer profiles including error and sensitivity analysis of the estimated

parameters. This is demonstrated for PET data sets obtained from radish, sugar beet and maize plants.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Since about a century vascular transport in higher plants is studied
and analyzed, yielding in various theories and models still under
debate (see e.g. Tyree and Zimmermann, 2002; Holbrook and
Zwieniecki, 2005; Lacointe and Minchin, 2008; De Schepper and
Steppe, 2010). Because of the delicate structure of the transport tissues,
non-invasive techniques are needed to study the underlying mechan-
isms in intact plants. Very powerful approaches in that respect are
tracer studies using radioisotopes (Vose, 1980) or magnetic resonance
imaging (MRI) (Ishida et al., 2000; Köckenberger, 2001). With both
modalities, spatio-temporal data sets can be obtained by monitoring a
labeled item (either radioactive tracer or excited nuclear spins) inside
the plant. Although MRI is capable to directly measure velocities of
1H2O in the two major long-distance tissues of plants, xylem and
phloem (Windt et al., 2006), its spatial resolution does not reach
cellular and hardly vascular dimensions. The same restriction holds for
the spatial detection of radioactive tracers, where either autoradio-
graphic projections integrate over the third dimension or as in the case
of positron emission tomography (PET) the range of the positrons
before annihilating limits spatial resolution to approximately 1.4 mm
(Phelps et al., 1975). Hence, the pixels (2D) or voxels (3D) integrate
over several tissues and the related local transport processes. Conse-
quently, the acquired data incorporates information of different
processes (e.g. flow, diffusion, exchange, storage, reactions, etc.), which
ll rights reserved.
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typically cannot be disentangled experimentally (Jahnke et al., 2009).
Therefore, the extraction of the averaged transport parameters needs a
simplified model of the underlying processes in order to relate them to
predictions from physiological models or experimental hypotheses.

The aim of this work is not to add another mechanistic transport
model or theory to the pool of existing ones (see e.g. Table 1 in
Thompson and Holbrook, 2003), but to suggest a simplified physical
description of the spatio-temporal data from MRI or PET measure-
ments. Existing models of mass transport in plants (Christy and Ferrier,
1973; Goeschl and Magnuson, 1986; Thompson and Holbrook, 2003;
Hölttä et al., 2006; Pickard and Abraham-Shrauner, 2009) are typically
considering many physiological parameters and hence are too com-
plex for this purpose, but could of course be very useful to physio-
logically interpret the results of our data analysis.

On the other hand, we want to refrain from a solely data driven
approach like time series analysis (e.g. Minchin and Troughton,
1980) for the following reasons: (a) it completely disregards
physical parameters of which at least the boundaries or ranges
are typically known, (b) the error analysis of autoregressive
polynomial fits is complex, (c) de-trending the data from the rapid
radioactive decay of short lived isotopes is non-trivial and finally
(d) the use of system identification theory is problematic in cases
where input and output are very similar as it is usually the case for
homogeneous spatial sections along the vascular transport path-
way of plants. Due to these reasons, we request the following
properties for a suitable model. It should
(a)
 represent transport of a non-specific tracer like 11C for PET or a
stable contrast agent like 2H2O for MRI within vascular conduits
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of higher plants as well as lateral exchange with the direct
vicinity of the conduits;
(b)
 be physical and as simple as possible to represent the data
obtained with very different techniques and to be applicable to
(m)any plants;
(c)
 be a mechanistic transport model without any scaling para-
meters (sizes) or anatomical details. In a separate approach,
further biological theories and physiological models can then
explain the model parameters and their responses to e.g.
environmental changes;
(d)
 include only a minimum number of fit parameters, too many
could make the model too specific and the fitting result might
become ambiguous;
(e)
 possibly be solvable analytically in order to speed up the fitting
procedure;
(f)
 contain measurable transport constants like diffusion coeffi-
cients or velocities to enable reasonable physical constraints
for a fitting procedure;
(g)
 allow for arbitrary input (initial) tracer distributions in order to
cover all kinds of experimental situations;
(h)
 allow to represent spatio-temporal data, i.e. time series of the
spatial changes of the amount of tracer along the transport
trajectory.
The model presented here is based on previously published
models for tracer transport (Horwitz, 1958; Tyree, 1975) and is
similar to models known from other disciplines (Krantz, 2007), e.g.
chromatography (van Deemter et al., 1956) or dialysis (Legallais
et al., 2000) but was adapted and extended to meet the specific
requirements mentioned above.
2. Three compartment tracer transport model

2.1. Model description

The basic scenario for our model is illustrated in Fig. 1, where the
tissue of the plant that participates in transport is divided into three
compartments:
1.
 The vascular conduit (xylem or phloem vessel) of undefined size
with coherent transport (flow, drift and convection) with one
effective velocity, v, and an incoherent diffusion with coefficient D1.
2.
 A parenchyma of unspecified width and sort. Exchange from
compartment 1 to compartment 2 is described by a rate a12, and
1. Schematic representation of the mechanistic transport model with 3

partments. The system is observed along an arbitrary spatial transport

ctory x with respect to time t. The observed signal is an integral of the three

partments. v is the flow velocity in compartment 1, a12, a21 and b represent the

ange rates between the compartments and D1,2 are the diffusion coefficients for

rst and second compartment.
in the opposite direction by a rate a21. There is no coherent
transport but only diffusion with a coefficient D2.
3.
 Finally, the tracer can become completely immobilized in the third
compartment. Once adsorbed from the second compartment by a
rate b, it stays there (e.g. metabolized 11C in form of cellulose).

Radioactive decay is represented by a decay rate, l¼ ln 2/t1/2, with
t1/2 as the half-life of the used isotope (for 11C: t1/2¼20.4 min and
l¼5.67�10�4 s�1; for 18F: t1/2¼110 min and l¼1.05�10�4 s�1;
and for stable isotopes: t1/2¼N and l¼0 s�1). Hence, this model
consists of transport and exchange parameters only and contains no
details on spatial scales or anatomy. We avoided an additional fourth
compartment representing a vascular conduit with reverse flow
compared to compartment 1 because in typical 11C tracer experi-
ments exchange of tracer between phloem and xylem has no
significant impact on the data (Thorpe et al., 1998). The main
extensions of our model compared to previous two-compartment
models (Horwitz, 1958; Tyree, 1975) are the third compartment and
diffusion terms for the first and second compartment.

According to Fig. 1 the change of the density in space (x) and
time (t),ri(x, t) (arbitrary units), of the observed signal carrier in the
three compartments i¼1, 2, 3 can be completely described by
Fokker–Planck equations (Risken, 1989) including exchange terms

1:
@r1ðx,tÞ

@t
¼�v

@r1ðx,tÞ

@x
þD1

@2r1ðx,tÞ

@x2
�ða12þlÞr1ðx,tÞþa21r2ðx,tÞ

2:
@r2ðx,tÞ

@t
¼ D2

@2r2ðx,tÞ

@x2
þa12r1ðx,tÞ�ða21þbþlÞr2ðx,tÞ

3:
@r3ðx,tÞ

@t
¼ |fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

coherent motion

ðflowÞ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
incoherent motion

ðdiffusionÞ

br2ðx,tÞ�l r3ðx,tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
exchange, decay and adsorption

ð1Þ

where v is the effective velocity in compartment 1. We assume a
single effective velocity, v, (corresponding to ‘‘plug flow’’ with
typical velocities around 10�5 m/s for phloem and 10�3 m/s for
xylem) because this allows to neglect sizes and shapes of the
compartment as well as additional obstacles (e.g. sieve plates). This
coarse simplification of a probably laminar velocity distribution is
justified by our requirement to keep the model as simple as
possible. We also assume constant and concentration independent
diffusion coefficients. The exchange parameters, a12, a21 and b are
rates like the radioactive decay rate l and have units 1/s. The
observed quantity however is the sum over all three compart-
ments, because the applied methods cannot resolve the proposed
compartments with sufficient spatial resolution, hence

r¼ r1þr2þr3: ð2Þ

2.2. Analytical solution

We first consider a situation where tracer enters compartment 1
only at some given time t¼0. Hence the tracer distribution at that
time is assumed as r1(x, t¼0)¼r0(x) and r2,3(x, t¼0)�0. The
system of partial differential equations (1) then has the following
solution in reciprocal space k (wave number), after or before
Fourier-transformation

r̂ðk,tÞ ¼ r̂0ðkÞe
�lt e�bt coshðdtÞð1�aÞþsinhðdtÞ

a12�ab�g
d

� �
þa

� �
ð3Þ

with the definitions

a¼ a12b

b2
�d2

b¼ 1
2ða12þa21þbþ ikvþk2ðD1þD2ÞÞ
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g¼ 1
2ða12�a21�bþ ikvþk2ðD1�D2ÞÞ

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þa12a21

q
The derivation of the solution can be found in Appendix A. Eq. (3)
represents the total density r̂ðk,tÞ, at time t in Fourier-space as a
product of the expression on the right side with the initial density
r̂0ðkÞ, hence as a convolution of the two in real space, as to be
expected in a linear system. Therefore, an expression in k-space not
only simplifies the equation but can become a real advantage,
because some of the data are already originally acquired in
reciprocal space (e.g. MRI data) or can be readily numerically
transformed. Another obvious result is that all of the initial signal
has to decay with exp(�lt).

If the initial condition cannot be obtained in another way, in the
case of pulse-labeling experiments it is convenient to assume a
simple Gaussian distribution r0ðxÞ � expð�ðx�x0Þ

2=2s2Þ, which
corresponds in Fourier-space to

r̂0ðkÞ � expð�1
2s

2k2�ix0kÞ ð4Þ

Here s is the width of the distribution and x0 is the shift into the
negative spatial direction. This initial condition is not meant to
mimic any realistic labeling process but merely provides an input
function roughly consistent with the nature of the experiment. A
performance comparison of the analytical solution with a standard
PDE solver can be found in Appendix C.

2.3. General behavior of the model

In a special case where all model parameters are zero except for
velocity and exchange to compartment 2 (v40, a12Z0), the
solution of Eq. (1) reduces to a simple expression in real space,
see Appendix B. In a case where more parameters are different from
zero, the analytical expression (3) no longer provides an intuitive
insight into the general behavior of the model. In order to illustrate
this behavior and the influence of the model parameters the tracer
distribution in each compartment is exemplified in Fig. 2.
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Fig. 2. Illustration of the general model behavior. Tracer distribution in each compartm

Diffusion and decay have not been regarded; D1¼D2¼0, l¼0. (a) x¼0 mm, (b) x¼100
Parameter a12 determines exchange of material to compartment
2 where it stays until it exchanges back to compartment 1 or moves
to compartment 3. The exchange rate a21 brings matter back into
the stream of compartment 1 and causes the tail of the data for
compartment 1 at higher values of x and t. Storage in compartment
3 is described by parameter b. With non-zero b material stays
mostly at low x-values as a constant (see Fig. 2a), depriving the
system so much that an exponential decline is observed also in the
spatial domain. The width of the time series for compartment 2 is
mainly determined by the sum of a21 and b.

For the simulated tracer distribution shown in Fig. 2, the decay
constant was set to zero (l¼0) in order to allow a visualization of
the tracer distribution for high values of t and x. Here and in all
following calculations, the diffusion constants are set to zero
(D1¼D2¼0 m2/s) for the following reason: the diffusion coefficient
of water is known to be in the order of 2e�9 m2/s. We assume the
self-diffusion of the photoassimilates within the phloem to be even
slower and negligible in comparison to changes of the tracer
concentration caused by transport- and exchange processes.
2.4. Model behavior in steady state

Next we consider a scenario where the system is fed by a
constant flow j0 (dimensions of r times [m/s]) of tracer at the
position x0, resulting at t-N in a steady state in compartments 1
and 2, whereas compartment 3 accumulates tracer. The fraction of
tracer fixed in compartment 3 along a certain spatial distance x2–x1

is a physiologically meaningful parameter and often called ‘loss’ or
‘leakage’ (Minchin and Thorpe, 2003). Since the quantity of interest
here is the total amount of immobilized tracer and not the amount
of tracer that is still radioactive, we set the decay rate to zero in the
following (l¼0). The PDEs from Eq. (1) then simplify to

0¼�v
@r1ðx,tÞ

@x
�a12r1ðx,tÞþa21r2ðx,tÞ

0¼ a12r1ðx,tÞ�ða21þbÞr2ðx,tÞ
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ent over time for different spatial positions calculated as described in Section 3.1.
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@r3ðx,tÞ

@t
¼ br2ðx,tÞ

with the boundary condition r1(x0)¼ j0/v. This can directly be
solved to r3

r3ðx,tÞ ¼ j0Wexpð�Wðx�x0ÞÞt

with the substitution

W¼
a12b

vða21þbÞ

The loss can be calculated as the ratio of tracer fixed in the region of
interest to the tracer entering this region:

Loss¼

R x2

x1
r3dxR1

x0
r3dx�

R x1

x0
r3dx

¼ 1�expð�Wðx2�x1ÞÞ ð5Þ

As this parameter only depends on the transport and exchange
properties of the model and is largely independent of the input
function, it is especially useful when comparing results from
different experimental scenarios.
3. Analyzing experimental data

Numerical evaluation, fitting and error analysis was computed
in MATLAB R2010a (MathWorks, Inc.) using mainly home-built
procedures, which can be requested from the authors.

3.1. Fitting procedure

Fitting means minimizing the merit function (Press et al., 2007),
being the difference of the simulated data to the experimental data, by
variation of the model parameters. In a first step, the experimental
data are read in and the fitting procedure is started by guessing good
start parameters (typically done by visual inspection). The evaluation
of the analytical equation (3) is implemented as follows:
(a)
Fig.
a12¼

unit

used
The time points of interest [tmin y tmax] are known from the
experiment. The spatial grid, dx, is defined with regard to the
desired numerical accuracy and the available computing time
(see Fig. 6 in Appendix C).
(b)
 The maximal extension in k-space is calculated as kmax¼p/dx.

(c)
 The velocity, v, results in a guess of the maximal spatial

extension xmax¼v(tmax�tmin)+x0. Real space then stretches
from �xmax to +xmax, hence having n¼2xmax/dx entries.
The gridding of k-space, dk, is then simply defined as dk¼

2kmax/n¼p/xmax.
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If the initial density function r̂0ðkÞ cannot be quantified by an
already existing expression of Eq. (3) another function has to be
assumed. Typically, in the case of pulse-labeling experiments
we use the Gaussian from Eq. (4) with widths and shift x0, both
of which are treated as fitting parameters as well.
(e)
 Eq. (3) is then numerically evaluated on this k–t grid and
discretely Fourier-transformed along the k-direction only.
(f)
 Because r(x, t) denotes a concentration of matter, the result of
step (e) must be real and positive. However, caution must be
paid to the fact that numerical errors and various implementa-
tions of the discrete FFT can cause a non-zero imaginary part.
Affirming that the origin of an imaginary result is purely due to
finite numerical accuracies, it can simply be ignored by taking
either the real or complex magnitude value.
(g)
 r(x, t) is interpolated to the spatial and temporal region of
interest and multiplied with a scaling factor ensuring the
simulation to be in the right order of magnitude. This scaling
factor is also fitted later on.
Fig. 3 shows a result forr(x, t) which is typical as being similar to
the experimental data analyzed in the following.

In a next step the best fit to the data is searched by a standard
non-linear least-squares method (Levenberg, 1944; Marquardt,
1963; Press et al., 2007) utilizing a damping strategy as described in
(Nielsen, 1999). The necessary partial derivates of the merit-
function are approximated numerically using the first-order cen-
tral differential quotient. Additionally, the full parameter space is
restricted to the positive subspace only, because all parameters in
Eq. (1) are greater or equal zero. Regarding the velocity, v, data
preparation has to be performed in such a fashion that vZ0. In
order to force the fitting routine to search for a minimum in this
parameter subset only, it operates on the logarithm of the
parameter space.

3.2. Error analysis

Due to the calculation of the fitting function in a Fourier-
transformed domain the standard procedure of error estimation
(using co-variances) in Levenberg–Marquardt fits could not be
implemented in a straight-forward way. Therefore, a statistical
(Monte-Carlo simulation, sampling bootstrapping) approach was
used to determine confidence intervals of all parameters (Press
et al., 2007). This approach randomly replaces some data points
with others using an appropriate distribution to generate modified
pseudo-experimental data sets, each of which is then fitted again.
This procedure is repeated as often as possible and the distribution
Time [min]

racer intensity (logarithmic) [a.u.]

50 100
1 E-20

1 E-15

1 E-10

1 E-5

1

lculated as described in Section 3.1 using the parameters v¼2.5 mm/min,

. Left: linear, right: logarithmic display of intensities (see color bars in arbitrary

rizontal lines indicate examples of spatial positions of interest similar to those
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of the resulting fitted parameter sets is assumed to be the error
distribution of the according parameter. In this work, we used a
uniform distribution for generating new data sets with a bootstrap
sampling rate of 400 and analyzed the resulting errors as being
normally distributed. For more details see (Press et al., 2007).

3.3. Sensitivity analysis

The sensitivity of the model regarding changes of the para-
meters can already give a hint how fast each parameter can be
estimated when the model is fitted to artificial or experimental
data. In order to determine the sensitivity each parameter was
varied stepwise from �50% to 50% in relation to the parameter set
from Fig. 3. The deviance w2 is the sum over the squared deviations
from the reference data. In this range of the parameter space and
considering the same spatial and temporal positions as used in
Section 2.3, Fig. 4a clearly shows the dominant influence of the
velocity v and the exchange rate a12. For all parametersw2 shows an
unsymmetrical development for higher values (Dp425%) which is
due to the strongly non-linear nature of the solution Eq. (3).

By adding noise to the same reference data and fitting the
resulting curves as described in Section 3.1, the confidence inter-
vals of each model parameter can be calculated according to
Section 3.2. The result, as shown in Fig. 4b, already indicates the
uncertainty to be expected from a certain level of noise in
experimental data. The velocity v shows the smallest uncertainty
in accordance with the results in Fig. 4a. For the other parameters
there is no such direct relationship between impact on the model
behavior and confidence interval since their uncertainty strongly
depends on the respective spatial and temporal grid.

3.4. Example: PET data of 11C transport into three different plant roots

The data presented in Fig. 5 were obtained from spatio-
temporally resolved PET data on three different root types (sugar
beet, radish and maize) and their acquisition is explained else-
where (Jahnke et al., 2009). For the data from the sugar beet and
maize root experiments the three-dimensional spatial data were
integrated over two dimensions and a certain width in the third
dimension. This third dimension is roughly the gravitational axis
along which transport in plants occurs. Hence, the result of this
crude data simplification is somewhat mimicking the traditional
approach to place integrating detectors along the transport path-
way. In order to exploit the full wealth of information in the 4D PET/
MRI data much more sophisticated tools need to be developed in
the future. A first approach in this direction was implemented for
the data from the radish experiment where it is obvious that the
experimental transport pathway is curved. Here cylindrical masks
-0.5 -0.25 0 0.25 0.5
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Fig. 4. Model sensitivity: (a) varying all parameters up to 50% with the underlying para

shows the respective sensitivity and (b) confidence intervals of each parameter depend
were distributed along the major transport pathway (see Fig. 5c).
The time profiles at the centers of the masks were extracted by
integrating the data over these masks.

The data displayed in the following are therefore projections of
the transported 11C tracers on a one-dimensional pathway through
the root system. These time series were analyzed as described in
Sections 3.1 and 3.2. The resulting fitted parameters and the 90%
confidence intervals are shown in Table 1.

A similar fit was done for a modified model with a fixed ratio
between the parameters a21 and a12: a21 ¼ h a12, where h is a
constant. The idea behind this modification is to simplify the model
such that the number of fitting parameters is reduced without
affecting the general functionality of the model too much. Table 2
shows the fitting results for all three data sets using different values
of h. Firstly, h was set to the ideal ratio of a12 and a21 resulting from
the fit in Table 1. As expected, the ideal ratio delivers the original
fitting values from Table 1 but with considerably smaller con-
fidence intervals. Using arbitrary values for h (0.5, 1.0 and 2.0), the
fitted parameters somehow differ from Table 1 but the confidence
intervals also decreased significantly.
4. Discussion

Our focus on rigorous parameter estimation is motivated by the
goal of providing a method for quantitative comparison of data sets
from tracer transport experiments. The comparison can be per-
formed on the basis of parameter estimates since a successful fit
implies that the experimental data are fully characterized by the set
of model parameters. For this purpose, the absolute values of the
fitted model parameters are of little relevance and it is also not
necessary, albeit worthwhile, to gain insight into the physiological
role of the parameters. Besides, caution has to be taken when trying
to interpret a single parameter of the model in a physiological way.
This not only includes the exchange and diffusion parameters
which sum up several processes within the plant tissues but
pertains also to the velocity v. Intuitively one might think of v as
a group velocity (i.e. the mean velocity of the center of mass), but it
denotes the front velocity of the fastest particles (i.e., the particles
in compartment 1) which might be distinctively different from the
group velocity. Therefore, the only parameter with an immediate
physiological connotation is the Loss of tracer as a composition of
the transport and exchange properties of the system independent
of the initial condition r0. r0 is a purely auxiliary function used to
provide a suitable input into the region of interest. The estimation
of the parameters of r0 during the fitting process is not unlike a
backward extrapolation from that region. Therefore, the values of
the parameters s and x0 of the Gaussian initial distribution used in
our examples are of very little interest. The Gaussian distribution
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Table 1
Fitting results. Fitted model parameters as well as respective 90% confidence intervals (c.i.) for 11CO2 transport experiments for sugar beet, radish bulb and maize roots.

The diffusion rates were not fitted (D1,2¼0 m2/s), l¼0.034 min�1. w2 is the deviance. Loss was calculated according to Eq. (5).

Parameter Unit Sugar beet Maize root Radish bulb

Fit c.i. [%] Fit c.i. [%] Fit c.i. [%]

Model
v mm/min 1.99 7 11.7 2.34 7 34.5 2.19 7 29.5

a12 min�1 0.34 7 23.1 0.32 7 99.9 0.44 7 67.3

a21 min�1 0.14 7 10.0 0.33 7 32.0 0.24 7 38.5

b min�1 0.061 7 13.1 0.016 7 41.4 0.071 7 23.0

Initial condition
r mm 6.51 7 64.0 9.84 7 37.9 6.39 7 54.3

x0 mm 73.33 7 7.4 73.40 7 4.33 44.00 7 8.7

Loss %/cm 40.8 7 3.3 6.2 7 22.9 36.4 7 3.9

v2 a.u. 0.0059 7 27.8 0.0751 7 19.3 0.0477 7 23.1

Fig. 5. Tracer profiles of three tracer transport experiments. The symbols show the 11C-tracer intensities for several spatial positions over time in steps of 5 min. The

continuous lines depict the respective fitted tracer profiles according to the parameters shown in Table 1. The experimental data were previously published in Jahnke et al.

(2009). Tracer profiles and fits for (a) sugar beet and (b) maize root. (c) Co-registered MRI and PET image from radish bulb. Blue rectangles depict the spatial regions of interest

(ROIs) consecutively numbered by symbols on the right side. (d) Tracer profiles from integrated ROIs and fit for radish bulb.
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was chosen just for convenience; any other smooth initial density
function, allowing a similar good fit, could be used instead.

All three examples of experimental data sets are well repro-
duced by our model, even though the quality of the fits differs as
indicated by the value of the deviance w2. The lower estimate of b

and higher ratio of a21 to a12 for maize (see Table 1) results from the
lower tail of the experimental curves which is also responsible for
the comparably small value of Loss for maize. This was to be
expected since in maize roots photoassimilates are transported
mainly to the root tips whereas in sugar beet and radish the
observed plant parts themselves constitute the storage organs. For
all three data sets the confidence intervals of Loss are relatively
small which emphasizes the special role of this parameter and its
independence from the specific model setup. The confidence
intervals of the other model parameter estimates are high com-
pared to what can be explained simply by noise in the data: in
our examples the noise is less than 1% and the analysis of artificial data
with added noise in Section 3.3 shows that such a noise level covers
only confidence intervals of less than 1%. Thus, the high confidence
intervals indicate that for these data the model is over-parameterized
although the number of fitting parameters is already small. The
over-parameterization can be further demonstrated by the effective
parameter reduction obtained through a coupling of two model
parameters as explained in Section 3.4. By defining a fixed ratio
between parameters a21 and a12, the confidence intervals reduce
considerably depending on the proportionality factor h without



Table 2
Fitting results of modified model. Fitted model parameters as well as respective 90% confidence intervals using the modified model with a fixed ratio between the parameters

a21 and a12 (a21¼ha12). w2 is the deviance. Loss was calculated according to Eq. (5).

Sugar beet

Parameter Unit h¼0.3998 h¼0.5 h¼1.0 h¼2.0

Fit c.i. [%] Fit c.i. [%] Fit c.i. [%] Fit c.i. [%]

Model
v mm/min 1.99 7 3.5 1.64 7 4.0 1.46 7 7.2 1.44 7 8.1

a12 min�1 0.34 7 7.6 0.23 7 10.2 0.22 7 11.2 0.27 7 12.3

b min�1 0.061 7 7.9 0.070 7 9.1 0.130 7 11.9 0.256 7 12.7

Initial condition
r mm 6.51 7 11.9 10.42 7 7.9 15.70 7 6.9 18.75 7 6.1

x0 mm 73.33 7 4.4 78.47 7 5.0 91.75 7 8.5 106.74 7 9.3

Loss %/cm 40.8 7 3.1 41.1 7 3.2 43.1 7 3.7 45.3 7 3.8

v 2 a.u. 0.0059 7 27.4 0.0062 7 26.3 0.0208 7 32.7 0.0335 7 36.6

Maize root

Parameter Unit h¼1.0430 h¼0.5 h¼1.0 h¼2.0

Fit c.i. [%] Fit c.i. [%] Fit c.i. [%] Fit c.i. [%]

Model
v mm/min 2.34 7 3.7 3.60 7 3.7 2.39 7 4.0 1.79 7 3.5

a12 min�1 0.32 7 23.3 0.83 7 26.7 0.34 7 25.3 0.12 7 28.6

b min�1 0.016 7 23.0 0.012 7 25.8 0.016 7 25.0 0.027 7 23.7

Initial condition
r mm 9.84 7 18.5 6.59 7 89.9 9.65 7 20.72 12.71 7 7.4

x0 mm 73.40 7 3.9 71.92 7 4.1 73.30 7 4.2 75.17 7 3.6

Loss %/cm 6.2 7 20.3 6.2 7 22.8 6.2 7 22.0 6.6 7 20.1

v 2 a.u. 0.0751 7 20.0 0.0775 7 20.5 0.0751 7 20.2 0.0782 7 19.3

Radish bulb

Parameter Unit h¼0.5526 h¼0.5 h¼1.0 h¼2.0

Fit c.i. [%] Fit c.i. [%] Fit c.i. [%] Fit c.i. [%]

Model
v mm/min 2.19 7 5.8 2.34 7 5.7 1.57 7 3.9 1.49 7 5.9

a12 min�1 0.44 7 21.4 0.50 7 20.9 0.21 7 11.3 0.23 7 10.1

b min�1 0.071 7 7.9 0.067 7 8.7 0.113 7 10.1 0.222 7 11.8

Initial condition
r mm 6.39 7 11.6 5.56 7 17.7 10.34 7 6.1 12.65 7 6.1

x0 mm 44.00 7 4.6 43.29 7 5.3 48.78 7 5.4 54.76 7 7.8

Loss %/cm 36.4 7 3.6 36.3 7 4.0 37.5 7 3.8 39.7 7 4.5

v2 a.u. 0.0477 7 23.0 0.0478 7 25.7 0.0530 7 24.5 0.0721 7 24.7
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significantly increasing the deviance w2, see Table 2. Again, Loss turns
out to be stable as it is largely independent of h. For the sugar beet and
radish data, the w2 values depend on h while the maize data could
always be fitted with the same quality. This indicates that there is no
universally optimal ratio of the exchange parameters.

Recognizing the fact of over-parameterization in our examples
justifies neglecting additional model parameters like diffusion
coefficients. Fitting the model with the diffusion coefficients does
not result in a noticeable enhancement of w2 (the relative decrease
is less than 0.1%) but in a significant increase of the confidence
intervals of all parameters (data not shown). In conclusion, we
observe that depending on the informational content of the
experimental data, the model needs to be adapted for each
specific experimental setup. This can be done by analyzing the
co-variances of the parameters and subsequently adding or remov-
ing functional parameters in order to accomplish a satisfying
parameter estimate.
5. Conclusions

Searching for a most simple tracer translocation model describ-
ing our experimental data, we extended previously published
models (Horwitz, 1958; Tyree, 1975) in several respects: we
inserted a third compartment which irreversibly accumulates
tracer, included diffusion into the governing equations and
obtained an analytical solution for the tracer distribution allowing
for fast and accurate calculation. The tracer transport model
together with the fitting procedure and error analysis presented
constitutes a basic framework for quantitative analysis of data
from tracer experiments using nearly arbitrary initial conditions.
Although the model parameters are not directly linked to physio-
logical properties, they can be used to calculate the system loss
which has an obvious physiological meaning. The example data
shown here are well reflected by the model. However, an adaption
of the model to specific experimental conditions is still necessary.
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One of the next steps is a systematic investigation of possible co-
variances of the model parameters and the design of the experimental
setup in order to optimize the certainty of the parameters of interest.
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Appendix A. Detailed analytical solution

The system of partial differential equations (1) can be partially
compacted using a vector/matrix notation:

@
r
@t
¼� AþV

@

@x
�D

@2

@x2

 !
r with

A ¼
a12þl �a21

�a12 a21þbþl

 !
, V ¼

v 0

0 0

� 	
and

D ¼
D1 0

0 D2

 !
, r ¼

r1ðx,tÞ

r2ðx,tÞ

 !
ðA:1Þ

The last equation of (1) only depends on r2ðx,tÞ and r3ðx,tÞ and will
be treated separately. Eq. (A.1) can easily be solved in reciprocal
space. The Fourier-transform generates

@r̂ðk,tÞ

@t
¼�ðAþ ikV þk2D Þr̂ðk,tÞ

@r̂3ðk,tÞ

@t
¼ br̂2ðk,tÞ�lr̂3ðk,tÞ ðA:2Þ

which has the solution
r̂ðk,tÞ ¼ exp �ðAþ ikV þk2D Þt
h i

r̂ðk,0Þ

r̂3ðk,tÞ ¼ b

Z t

0
r̂2ðk,tÞeltdte�lt ðA:3Þ

The exponent in Eq. (A.3) can be expressed using the Pauli

matrices, sj , as

Aþ ikV þk2D ¼ c0I þ
X3

j ¼ 1

cjsj

with I ¼
1 0

0 1

� 	
, s1 ¼

0 1

1 0

� 	
, s2 ¼

0 i

�i 0

� 	
, s3 ¼

1 0

0 �1

� 	
ðA:4Þ

which results in the following coefficients:

c0 ¼
1
2 Tr Aþ ikV þk2D


 �
¼ 1

2ða12þa21þbþ2lþ ikvþk2ðD1þD2ÞÞ

c1 ¼�
1
2 ða12þa21Þ; c2 ¼�

1
2iða12�a21Þ

c3 ¼
1
2ða12�a21�bþ ikvþk2ðD1�D2ÞÞ ðA:5Þ

and the exponential function in Eq. (A.3) becomes

exp � Aþ ikV þk2D

 �

t
h i

¼ exp½�c0t�exp �
X

j

cjsj t

2
4

3
5 ðA:6Þ
Using the well known commutation and anticommutation
relations (see for instance: C. Cohen-Tannoudji, B. Diu, F. Laloë:
‘‘Quantum Mechanics’’ Wiley, 2005)

si , sj

� �
¼ si sj�sj si ¼ 2i

X3

k ¼ 1

eijksk

si , sj

� �
¼ si sj þsj si ¼ 2dijI or si sj ¼ dijI þ i

X3

k ¼ 1

eijksk

ðA:7Þ

where eijk is the Levi–Civita symbol and dij is the Kronecker delta, it
can be shown that

X3

j ¼ 1
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0
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1
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with 9c9¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiX3

j ¼ 1

c2
j

vuut and n A N ðA:9Þ

The exponential function in Eq. (A.6) can then be rewritten as

exp �
X
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2
4

3
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X
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where the cosh can be expressed as an expansion of the even
powers of the argument while the sinh expands into the odd
powers. Combination of Eqs (A.10) with (A.8) then gives

exp �
X

j
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2
4

3
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� 
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This procedure results in the following solution in Fourier-space:
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and
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using r̂ðk,0Þ ¼ r̂01ðkÞ, r̂02ðkÞ
� 
t

. Solving the integral in Eq. (A.13) gives
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Inserting Eqs. (A.12) and (A.14) into Eq. (2) with the definitions from
Eq. (A.5) gives the final result in a more compact notation avoiding
unnecessarily indexed coefficients.
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by using the following definitions:

a :¼ a12b

b2
�d2

b :¼ c0�l
g :¼ c3

d :¼ 9c9

Eq. (3) is obtained by assuming r̂ðk,0Þ to be non-zero in the first

compartment only, i.e. r̂0ðkÞ :¼ r̂01ðkÞ and r̂02ðkÞ ¼ 0.
10-2 10-1 100 101 102
10-5

CPU time [s]

Fig. 6. Comparison with upwind scheme. Comparison of the analytical solution

equation (3) and the first-order upwind scheme solving Eq. (1) with regard to the

numerical error and the invested CPU-time. The internal grid width dx was varied

from 0.001 to 5 mm for the analytical solution and from 0.04 to 5 mm for the upwind

solution. nt is the number of time points where the model is evaluated.
Appendix B. Special solution with exchange to compartment 2
only

Allowing only transport and exchange to the second compart-
ment (v40, a12Z0, a21¼b¼D1¼D2¼0) and using a Gaussian
similar to Eq. (4) as initial conditionr0(x) the following solution for
r1 and r2 can be achieved in real space:

r1ðx,tÞ ¼
1ffiffiffiffiffiffi
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s
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with erf( ) being the Gauss error function. Although not useful for
analyzing experimental data, this simple case can be used to give a
measure of the numerical error. This error is caused by the discrete
Fourier transformation when evaluating Eq. (3) and strongly
depends on the choice of the grid for the wave number k (see
Section 3.1). The special solution also allows a comparison of the
analytical solution equation (3) with a standard PDE solver (e.g.
upwind scheme) with regard to convergence (by limiting the grid
kmax-N, respectively Dx-0 for the upwind scheme) and CPU-
time consumption, see Appendix C.
Appendix C. Comparison of the analytical solution with a
standard PDE solver

An alternative access to the solution of Eq. (1) can be used for
validating the analytical solution. First-order upwind methods (see
e.g. Press et al., 2007) are easy to adapt and to implement for our
transport model because all model parameters are constant in time
and space. For both solutions, the accuracy depends linearly on the
spatial grid width dx. Decreasing dx (respectively, increasing kmax in
case of the analytical solution) results in smaller numerical errors
at the cost of higher CPU-time consumptions, see Fig. 6. The
numerical error is defined as the maximum deviation from the
special solution equation (B.1) using the parameter set v¼1.5 mm/
min, a12¼0.01 min�1 with all other parameters set to zero. The
analytical solution shows a linear increase of CPU-time consump-
tion with increasing accuracy whereas the upwind scheme by its
nature shows a quadratic dependency. The performance of the
upwind scheme does not depend on the number of time points
where the model needs to be evaluated as the temporal resolution
is always proportional to the spatial grid width dx. In contrast, the
analytical solution has to be evaluated for each time point which
results in a shift of the error—CPU-time curve for a higher number
of time points. For the range of time points considered here the
analytical solution is clearly superior to the upwind scheme.
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