001     10970
005     20200423202814.0
024 7 _ |2 DOI
|a 10.1103/PhysRevLett.105.086103
024 7 _ |2 WOS
|a WOS:000281072100012
024 7 _ |2 Handle
|a 2128/7251
024 7 _ |a altmetric:1375700
|2 altmetric
037 _ _ |a PreJuSER-10970
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |0 P:(DE-Juel1)VDB85047
|a Weiss, C.
|b 0
|u FZJ
245 _ _ |a Imaging Pauli Repulsion in Scanning Tunneling Microscopy
260 _ _ |a College Park, Md.
|b APS
|c 2010
300 _ _ |a 086103
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4925
|a Physical Review Letters
|v 105
|x 0031-9007
|y 8
500 _ _ |a Financial support from the Helmholtz Gemeinschaft is gratefully acknowledged, as are helpful discussions with J. Kroha (Bonn), S. Blugel and N. Atodiresei (Julich).
520 _ _ |a A scanning tunneling microscope (STM) has been equipped with a nanoscale force sensor and signal transducer composed of a single D2 molecule that is confined in the STM junction. The uncalibrated sensor is used to obtain ultrahigh geometric image resolution of a complex organic molecule adsorbed on a noble metal surface. By means of conductance-distance spectroscopy and corresponding density functional calculations the mechanism of the sensor and transducer is identified. It probes the short-range Pauli repulsion and converts this signal into variations of the junction conductance.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB82898
|a Wagner, C.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB93050
|a Kleimann, C.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Rohlfing, M.
|b 3
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F. S.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB73384
|a Temirov, R.
|b 5
|u FZJ
773 _ _ |0 PERI:(DE-600)1472655-5
|a 10.1103/PhysRevLett.105.086103
|g Vol. 105, p. 086103
|p 086103
|q 105<086103
|t Physical review letters
|v 105
|x 0031-9007
|y 2010
856 7 _ |u http://dx.doi.org/10.1103/PhysRevLett.105.086103
856 4 _ |u https://juser.fz-juelich.de/record/10970/files/FZJ-10970.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/10970/files/FZJ-10970.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10970/files/FZJ-10970.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/10970/files/FZJ-10970.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:10970
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-Juel1)FUEK412
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
920 1 _ |0 I:(DE-Juel1)VDB801
|d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
970 _ _ |a VDB:(DE-Juel1)121693
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21