001     10980
005     20240610120154.0
024 7 _ |2 pmid
|a pmid:20190769
024 7 _ |2 DOI
|a 10.1038/nmat2713
024 7 _ |2 WOS
|a WOS:000275901000022
037 _ _ |a PreJuSER-10980
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-Juel1)VDB5029
|a Heggen, M.
|b 0
|u FZJ
245 _ _ |a Plastic deformation mechanism in complex solids
260 _ _ |a Basingstoke
|b Nature Publishing Group
|c 2010
300 _ _ |a 332 - 336
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 11903
|a Nature Materials
|v 9
|x 1476-1122
500 _ _ |a We thank C. Thomas and M. Schmidt for producing the materials and J. Barthel for carrying out the HAADF-STEM image simulation. This work was supported by the 6th Framework EU Network of Excellence 'Complex Metallic Alloys' (Contract No. NMP3-CT-2005-500140) and the Deutsche Forschungsgemeinschaft, (PAK 36).
520 _ _ |a In simple crystalline materials, plastic deformation mostly takes place by the movement of dislocations. Although the underlying mechanisms in these materials are well explored, in complex metallic alloys--crystalline solids containing up to thousands of atoms per unit cell--the defects and deformation mechanisms remain essentially unknown. Owing to the large lattice parameters of these materials, extended dislocation concepts are required. We investigated a typical complex metallic alloy with 156 atoms per unit cell using atomic-resolution aberration-corrected transmission electron microscopy. We found a highly complex deformation mechanism, based on the movement of a dislocation core mediating strain and separate escort defects. On deformation, the escort defects move along with the dislocation core and locally transform the material structure for the latter. This mechanism implies the coordinated movement of hundreds of atoms per elementary glide step, and nevertheless can be described by simple rearrangement of basic structural subunits.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB4944
|a Houben, L.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)130637
|a Feuerbacher, M.
|b 2
|u FZJ
773 _ _ |0 PERI:(DE-600)2088679-2
|a 10.1038/nmat2713
|g Vol. 9, p. 332 - 336
|p 332 - 336
|q 9<332 - 336
|t Nature materials
|v 9
|x 1476-1122
|y 2010
856 7 _ |u http://dx.doi.org/10.1038/nmat2713
909 C O |o oai:juser.fz-juelich.de:10980
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB788
|d 31.12.2010
|g IFF
|k IFF-8
|l Mikrostrukturforschung
|x 0
970 _ _ |a VDB:(DE-Juel1)121707
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)PGI-5-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21