000001101 001__ 1101
000001101 005__ 20211111141634.0
000001101 0247_ $$2DOI$$a10.1088/1367-2630/10/3/033034
000001101 0247_ $$2WOS$$aWOS:000254619200001
000001101 0247_ $$2Handle$$a2128/28987
000001101 037__ $$aPreJuSER-1101
000001101 041__ $$aeng
000001101 082__ $$a530
000001101 084__ $$2WoS$$aPhysics, Multidisciplinary
000001101 1001_ $$0P:(DE-HGF)0$$aPfotenhauer, S.M.$$b0
000001101 245__ $$aSpectral shaping of laser generated proton beams
000001101 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2008
000001101 300__ $$a033034
000001101 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000001101 3367_ $$2DataCite$$aOutput Types/Journal article
000001101 3367_ $$00$$2EndNote$$aJournal Article
000001101 3367_ $$2BibTeX$$aARTICLE
000001101 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000001101 3367_ $$2DRIVER$$aarticle
000001101 440_0 $$08201$$aNew Journal of Physics$$v10$$x1367-2630
000001101 500__ $$aRecord converted from VDB: 12.11.2012
000001101 520__ $$aThe rapid progress in the field of laser particle acceleration has stimulated a debate about the promising perspectives of laser based ion beam sources. For a long time, the beams produced exhibited quasi-thermal spectra. Recent proof-of-principle experiments demonstrated that ion beams with narrow energy distribution can be generated from special target geometries. However, the achieved spectra were strongly limited in terms of monochromacity and reproducibility. We show that microstructured targets can be used to reliably produce protons with monoenergetic spectra above 2MeV with less than 10% energy spread. Detailed investigations of the effects of laser ablation on the target resulted in a significant improvement of the reproducibility. Based on statistical analysis, we derive a scaling law between proton peak position and laser energy, underlining the suitability of this method for future applications. Both the quality of the spectra and the scaling law are well reproduced by numerical simulations.
000001101 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000001101 588__ $$aDataset connected to Web of Science
000001101 650_7 $$2WoSType$$aJ
000001101 7001_ $$0P:(DE-HGF)0$$aJäckel, O.$$b1
000001101 7001_ $$0P:(DE-HGF)0$$aSachtleben, A.$$b2
000001101 7001_ $$0P:(DE-HGF)0$$aPolz, J.$$b3
000001101 7001_ $$0P:(DE-HGF)0$$aZiegler, W.$$b4
000001101 7001_ $$0P:(DE-HGF)0$$aSchlenvoigt, H.-P.$$b5
000001101 7001_ $$0P:(DE-HGF)0$$aAmthor, K.-U.$$b6
000001101 7001_ $$0P:(DE-HGF)0$$aKaluza, M.C.$$b7
000001101 7001_ $$0P:(DE-HGF)0$$aLedingham, K. W. D.$$b8
000001101 7001_ $$0P:(DE-HGF)0$$aSauerbrey, R.$$b9
000001101 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b10$$uFZJ
000001101 7001_ $$0P:(DE-HGF)0$$aRobinson, A. P. L.$$b11
000001101 7001_ $$0P:(DE-HGF)0$$aSchwoerer, H.$$b12
000001101 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/10/3/033034$$gVol. 10, p. 033034$$p033034$$q10<033034$$tNew journal of physics$$v10$$x1367-2630$$y2008
000001101 8567_ $$uhttp://dx.doi.org/10.1088/1367-2630/10/3/033034
000001101 8564_ $$uhttps://juser.fz-juelich.de/record/1101/files/Pfotenhauer_2008_New_J._Phys._10_033034.pdf$$yOpenAccess
000001101 909CO $$ooai:juser.fz-juelich.de:1101$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000001101 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000001101 9141_ $$y2008
000001101 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000001101 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000001101 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000001101 970__ $$aVDB:(DE-Juel1)102001
000001101 980__ $$aVDB
000001101 980__ $$aConvertedRecord
000001101 980__ $$ajournal
000001101 980__ $$aI:(DE-Juel1)JSC-20090406
000001101 980__ $$aUNRESTRICTED
000001101 9801_ $$aFullTexts