000001101 001__ 1101 000001101 005__ 20211111141634.0 000001101 0247_ $$2DOI$$a10.1088/1367-2630/10/3/033034 000001101 0247_ $$2WOS$$aWOS:000254619200001 000001101 0247_ $$2Handle$$a2128/28987 000001101 037__ $$aPreJuSER-1101 000001101 041__ $$aeng 000001101 082__ $$a530 000001101 084__ $$2WoS$$aPhysics, Multidisciplinary 000001101 1001_ $$0P:(DE-HGF)0$$aPfotenhauer, S.M.$$b0 000001101 245__ $$aSpectral shaping of laser generated proton beams 000001101 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2008 000001101 300__ $$a033034 000001101 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000001101 3367_ $$2DataCite$$aOutput Types/Journal article 000001101 3367_ $$00$$2EndNote$$aJournal Article 000001101 3367_ $$2BibTeX$$aARTICLE 000001101 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000001101 3367_ $$2DRIVER$$aarticle 000001101 440_0 $$08201$$aNew Journal of Physics$$v10$$x1367-2630 000001101 500__ $$aRecord converted from VDB: 12.11.2012 000001101 520__ $$aThe rapid progress in the field of laser particle acceleration has stimulated a debate about the promising perspectives of laser based ion beam sources. For a long time, the beams produced exhibited quasi-thermal spectra. Recent proof-of-principle experiments demonstrated that ion beams with narrow energy distribution can be generated from special target geometries. However, the achieved spectra were strongly limited in terms of monochromacity and reproducibility. We show that microstructured targets can be used to reliably produce protons with monoenergetic spectra above 2MeV with less than 10% energy spread. Detailed investigations of the effects of laser ablation on the target resulted in a significant improvement of the reproducibility. Based on statistical analysis, we derive a scaling law between proton peak position and laser energy, underlining the suitability of this method for future applications. Both the quality of the spectra and the scaling law are well reproduced by numerical simulations. 000001101 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0 000001101 588__ $$aDataset connected to Web of Science 000001101 650_7 $$2WoSType$$aJ 000001101 7001_ $$0P:(DE-HGF)0$$aJäckel, O.$$b1 000001101 7001_ $$0P:(DE-HGF)0$$aSachtleben, A.$$b2 000001101 7001_ $$0P:(DE-HGF)0$$aPolz, J.$$b3 000001101 7001_ $$0P:(DE-HGF)0$$aZiegler, W.$$b4 000001101 7001_ $$0P:(DE-HGF)0$$aSchlenvoigt, H.-P.$$b5 000001101 7001_ $$0P:(DE-HGF)0$$aAmthor, K.-U.$$b6 000001101 7001_ $$0P:(DE-HGF)0$$aKaluza, M.C.$$b7 000001101 7001_ $$0P:(DE-HGF)0$$aLedingham, K. W. D.$$b8 000001101 7001_ $$0P:(DE-HGF)0$$aSauerbrey, R.$$b9 000001101 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b10$$uFZJ 000001101 7001_ $$0P:(DE-HGF)0$$aRobinson, A. P. L.$$b11 000001101 7001_ $$0P:(DE-HGF)0$$aSchwoerer, H.$$b12 000001101 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/10/3/033034$$gVol. 10, p. 033034$$p033034$$q10<033034$$tNew journal of physics$$v10$$x1367-2630$$y2008 000001101 8567_ $$uhttp://dx.doi.org/10.1088/1367-2630/10/3/033034 000001101 8564_ $$uhttps://juser.fz-juelich.de/record/1101/files/Pfotenhauer_2008_New_J._Phys._10_033034.pdf$$yOpenAccess 000001101 909CO $$ooai:juser.fz-juelich.de:1101$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access 000001101 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0 000001101 9141_ $$y2008 000001101 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000001101 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000001101 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0 000001101 970__ $$aVDB:(DE-Juel1)102001 000001101 980__ $$aVDB 000001101 980__ $$aConvertedRecord 000001101 980__ $$ajournal 000001101 980__ $$aI:(DE-Juel1)JSC-20090406 000001101 980__ $$aUNRESTRICTED 000001101 9801_ $$aFullTexts