001     1101
005     20211111141634.0
024 7 _ |a 10.1088/1367-2630/10/3/033034
|2 DOI
024 7 _ |a WOS:000254619200001
|2 WOS
024 7 _ |a 2128/28987
|2 Handle
037 _ _ |a PreJuSER-1101
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Pfotenhauer, S.M.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Spectral shaping of laser generated proton beams
260 _ _ |a [Bad Honnef]
|b Dt. Physikalische Ges.
|c 2008
300 _ _ |a 033034
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a New Journal of Physics
|x 1367-2630
|0 8201
|v 10
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The rapid progress in the field of laser particle acceleration has stimulated a debate about the promising perspectives of laser based ion beam sources. For a long time, the beams produced exhibited quasi-thermal spectra. Recent proof-of-principle experiments demonstrated that ion beams with narrow energy distribution can be generated from special target geometries. However, the achieved spectra were strongly limited in terms of monochromacity and reproducibility. We show that microstructured targets can be used to reliably produce protons with monoenergetic spectra above 2MeV with less than 10% energy spread. Detailed investigations of the effects of laser ablation on the target resulted in a significant improvement of the reproducibility. Based on statistical analysis, we derive a scaling law between proton peak position and laser energy, underlining the suitability of this method for future applications. Both the quality of the spectra and the scaling law are well reproduced by numerical simulations.
536 _ _ |a Scientific Computing
|c P41
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Jäckel, O.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Sachtleben, A.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Polz, J.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Ziegler, W.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Schlenvoigt, H.-P.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Amthor, K.-U.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Kaluza, M.C.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Ledingham, K. W. D.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Sauerbrey, R.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Gibbon, P.
|b 10
|u FZJ
|0 P:(DE-Juel1)132115
700 1 _ |a Robinson, A. P. L.
|b 11
|0 P:(DE-HGF)0
700 1 _ |a Schwoerer, H.
|b 12
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/1367-2630/10/3/033034
|g Vol. 10, p. 033034
|p 033034
|q 10<033034
|0 PERI:(DE-600)1464444-7
|t New journal of physics
|v 10
|y 2008
|x 1367-2630
856 7 _ |u http://dx.doi.org/10.1088/1367-2630/10/3/033034
856 4 _ |u https://juser.fz-juelich.de/record/1101/files/Pfotenhauer_2008_New_J._Phys._10_033034.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1101
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P41
|v Scientific Computing
|l Supercomputing
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK411
|x 0
914 1 _ |y 2008
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k JSC
|l Jülich Supercomputing Centre
|g JSC
|0 I:(DE-Juel1)JSC-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)102001
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21