Home > Publications database > LOCUSTRA: Accurate Prediction of Local Protein Structure Using a Two-Layer Support Vector Machine Approach > print |
001 | 1115 | ||
005 | 20180208210503.0 | ||
024 | 7 | _ | |2 pmid |a pmid:18763837 |
024 | 7 | _ | |2 DOI |a 10.1021/ci800178a |
024 | 7 | _ | |2 WOS |a WOS:000259398500016 |
037 | _ | _ | |a PreJuSER-1115 |
041 | _ | _ | |a eng |
084 | _ | _ | |2 WoS |a Chemistry, Multidisciplinary |
084 | _ | _ | |2 WoS |a Computer Science, Information Systems |
084 | _ | _ | |2 WoS |a Computer Science, Interdisciplinary Applications |
100 | 1 | _ | |0 P:(DE-Juel1)132307 |a Zimmermann, O. |b 0 |u FZJ |
245 | _ | _ | |a LOCUSTRA: Accurate Prediction of Local Protein Structure Using a Two-Layer Support Vector Machine Approach |
260 | _ | _ | |c 2008 |
300 | _ | _ | |a 1903 - 1908 |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |2 DRIVER |a article |
440 | _ | 0 | |0 16561 |a Journal of Chemical Information and Modeling |v 48 |x 1549-9596 |y 9 |
500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
520 | _ | _ | |a Constraint generation for 3d structure prediction and structure-based database searches benefit from fine-grained prediction of local structure. In this work, we present LOCUSTRA, a novel scheme for the multiclass prediction of local structure that uses two layers of support vector machines (SVM). Using a 16-letter structural alphabet from de Brevern et al. (Proteins: Struct., Funct., Bioinf. 2000, 41, 271-287), we assess its prediction ability for an independent test set of 222 proteins and compare our method to three-class secondary structure prediction and direct prediction of dihedral angles. The prediction accuracy is Q16=61.0% for the 16 classes of the structural alphabet and Q3=79.2% for a simple mapping to the three secondary classes helix, sheet, and coil. We achieve a mean phi(psi) error of 24.74 degrees (38.35 degrees) and a median RMSDA (root-mean-square deviation of the (dihedral) angles) per protein chain of 52.1 degrees. These results compare favorably with related approaches. The LOCUSTRA web server is freely available to researchers at http://www.fz-juelich.de/nic/cbb/service/service.php. |
536 | _ | _ | |0 G:(DE-Juel1)FUEK411 |2 G:(DE-HGF) |a Scientific Computing |c P41 |x 0 |
588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
650 | _ | 2 | |2 MeSH |a Algorithms |
650 | _ | 2 | |2 MeSH |a Computer Simulation |
650 | _ | 2 | |2 MeSH |a Databases, Factual |
650 | _ | 2 | |2 MeSH |a Models, Biological |
650 | _ | 2 | |2 MeSH |a Models, Molecular |
650 | _ | 2 | |2 MeSH |a Peptidyl Transferases: chemistry |
650 | _ | 2 | |2 MeSH |a Predictive Value of Tests |
650 | _ | 2 | |2 MeSH |a Protein Structure, Tertiary |
650 | _ | 2 | |2 MeSH |a Proteins: chemistry |
650 | _ | 2 | |2 MeSH |a Quantitative Structure-Activity Relationship |
650 | _ | 2 | |2 MeSH |a Streptomyces: enzymology |
650 | _ | 7 | |0 0 |2 NLM Chemicals |a Proteins |
650 | _ | 7 | |0 EC 2.3.2.12 |2 NLM Chemicals |a Peptidyl Transferases |
650 | _ | 7 | |2 WoSType |a J |
700 | 1 | _ | |0 P:(DE-Juel1)VDB46160 |a Hansmann, U. H. E. |b 1 |u FZJ |
773 | _ | _ | |0 PERI:(DE-600)1491237-5 |a 10.1021/ci800178a |g Vol. 48, p. 1903 - 1908 |p 1903 - 1908 |q 48<1903 - 1908 |t Journal of Chemical Information and Modeling |v 48 |x 1549-9596 |y 2008 |
856 | 7 | _ | |u http://dx.doi.org/10.1021/ci800178a |
909 | C | O | |o oai:juser.fz-juelich.de:1115 |p VDB |
913 | 1 | _ | |0 G:(DE-Juel1)FUEK411 |b Schlüsseltechnologien |k P41 |l Supercomputing |v Scientific Computing |x 0 |
914 | 1 | _ | |y 2008 |
920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |g NIC |k NIC |l John von Neumann - Institut für Computing |x 0 |
970 | _ | _ | |a VDB:(DE-Juel1)102034 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|