001     111841
005     20240619091046.0
024 7 _ |2 DOI
|a 10.1063/1.3702850
024 7 _ |2 WOS
|a WOS:000303598800052
024 7 _ |2 Handle
|a 2128/7800
037 _ _ |a PreJuSER-111841
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-HGF)0
|a Sachenko, A.V.
|b 0
245 _ _ |a Mechanism of contact resistance formation in ohmic contacts with high dislocation density
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2012
300 _ _ |a 083701
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3051
|a Journal of Applied Physics
|v 111
|x 0021-8979
|y 8
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a The authors at ISP acknowledge financial support from the National Academy of Sciences of Ukraine (program "Fundamental problems of nanostructured systems, nanomaterials and nanotechnology") and State program of Ukraine "Nanotechnology and nanomaterials."
520 _ _ |a A new mechanism of contact resistance formation in ohmic contacts with high dislocation density is proposed. Its specific feature is the appearance of a characteristic region where the contact resistance increases with temperature. According to the mechanism revealed, the current flowing through the metal shunts associated with dislocations is determined by electron diffusion. It is shown that current flows through the semiconductor near-surface regions where electrons accumulate. A feature of the mechanism is the realization of ohmic contact irrespective of the relation between the contact and bulk resistances. The theory is proved for contacts formed to III-V semiconductor materials as well as silicon-based materials. A reasonable agreement between theory and experimental results is obtained. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3702850]
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK505
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Belyaev, A.E.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Boltovets, N.S.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Konakova, R.V.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Kudryk, Ya.Ya
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Novitskii, S.V.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Sheremet, V.N.
|b 6
700 1 _ |0 P:(DE-Juel1)VDB76184
|a Li, J.
|b 7
|u FZJ
700 1 _ |0 P:(DE-Juel1)128738
|a Vitusevich, S.A.
|b 8
|u FZJ
773 _ _ |0 PERI:(DE-600)1476463-5
|a 10.1063/1.3702850
|g Vol. 111, p. 083701
|p 083701
|q 111<083701
|t Journal of applied physics
|v 111
|x 0021-8979
|y 2012
856 7 _ |u http://dx.doi.org/10.1063/1.3702850
856 4 _ |u https://juser.fz-juelich.de/record/111841/files/FZJ-111841.pdf
|y Published under German "Allianz" Licensing conditions on 2012-04-16. Available in OpenAccess from 2012-04-16
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/111841/files/FZJ-111841.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/111841/files/FZJ-111841.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/111841/files/FZJ-111841.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:111841
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK505
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 1
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-559H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 1
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0400
|2 StatID
|a Allianz-Lizenz / DFG
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0520
|2 StatID
|a Allianz-OA
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|g ICS
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|g PGI
|x 2
970 _ _ |a VDB:(DE-Juel1)140354
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-3-20200312
981 _ _ |a I:(DE-Juel1)PGI-8-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21