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Unusual shock wave in two-species driven systems with an umbilic point
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Using dynamical Monte Carlo simulations we observe the occurrence of an unexpected shock wave in driven

diffusive systems with two conserved species of particles. This U shock is microscopically sharp, but does not

satisfy the usual criteria for the stability of shocks. Exact analysis of the large-scale hydrodynamic equations of

motion reveals the presence of an umbilical point which we show to be responsible for this phenomenon. We

prove that such an umbilical point is a general feature of multispecies driven diffusive systems with reflection

symmetry of the bulk dynamics. We argue that a U shock will occur whenever there are strong interactions

between species such that the current-density relation develops a double well and the umbilical point becomes

isolated.
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I. INTRODUCTION

Nonequilibrium lattice gas models of interacting particles

with noisy dynamics [1,2] are paradigmatic models of systems

far from equilibrium and find a wide range of applications in

biological, social, and physical contexts [3–5]. Driving forces

due to bulk fields or boundary gradients lead to steady state

currents that invalidate the condition of detailed balance and

give rise to remarkable features which have no equilibrium

counterparts. As examples we mention boundary driven phase

transitions, spontaneous symmetry breaking, and hysteresis

in one spatial dimension. Particle systems with two or more

conserved species exhibit particularly rich behavior [6].

The coarse grained space-time evolution of bulk-driven

systems is governed by two fundamental types of excita-

tions: shocks, which carry discontinuities, and rarefaction

waves, which are continuous self-similar solutions of the

hydrodynamic limit equations [7]. Various properties of

the fundamental excitations such as stability, speed, and

morphology are determined by a scalar or vector function

which relates steady macroscopic currents to average particle

densities, the so-called current-density relation. The topology

of the current-density function (or surfaces, in the case of

several species of particles) such as the number of extrema

and saddle points determines qualitative features of the large

scale dynamics and, in particular, the number and character

of the different stationary phases and phase transitions that

one can observe in the underlying microscopic model [8,9].

In this way microscopic details of local particle interactions

are largely irrelevant as long as they produce a certain type of

current-density relation.

In this work we identify a large-scale excitation, reminis-

cent of a shock wave, but which should be unstable according

to usual shock stability criteria. Focusing on models with two

particle species we relate its appearance to a special property of

the current-density relation, the presence of an isolated umbilic

point. A generic umbilic point is a point on a current-density

surface where the two characteristic velocities coincide, which

breaks a usually assumed strict hyperbolicity assumption [10].

For the new excitation to exist, further specifications are

required: (i) these characteristic velocities must vanish at the

umbilic point and (ii) this point must be isolated (see Sec. III).

We shall call the new excitation an umbilic shock, or a U

shock. The aim of this article is to describe microscopic and

macroscopic properties of the U shock, and to investigate

conditions for its appearance and stability. We find that such an

excitation is not at all exotic and can generally be observed in

bidirectional models with left-right symmetry in the hopping

rates, provided that there is a sufficiently strong interaction

between the particles on the adjacent lanes.

The plan of the paper is the following: In Sec. II we

introduce our model and describe the U shock microscopically,

highlighting its difference from a usual shock. In Sec. III

we discuss macroscopic current-density relations with an

umbilic point which makes the existence of the U shock

possible. In Sec. IV we prove that bidirectional models with

left-right symmetry in the hopping rates all necessarily have

an umbilic point. We finish with conclusions and perspectives.

The Appendix contains necessary technical details.

II. THE MODEL AND A MICROSCOPIC U SHOCK

Our model describes particles with repulsive hard-core

interactions which hop unidirectionally along two chains of

L sites: One chain is for right-hopping particles and another

chain is for left-hopping particles. At each instant of time the

system is fully described by occupation numbers nk ∈ {0,1}
(for the right movers) and mk ∈ {0,1} (for the left movers).

A right-moving particle at site k can hop to its neighboring

site k + 1 provided it is empty, with a rate that depends on the

occupancies at sites k,k + 1 on the adjacent chain (see Fig. 1).

For example, a particle hops with rate β if the adjacent sites

are both occupied, etc. For clarity of presentation and analytic

simplification we shall keep only one rate γ = eν different

from the others, setting all remaining rates to 1,

α = β = ε = 1, γ = eν . (1)

Then the parameter

Q = γ − 1, (2)
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FIG. 1. Bidirectional two-chain model. For solvability, the rates

must satisfy α = β = ε = 1, γ = eν , where ν is the interchain

interaction constant [14]. Coupling to boundary reservoirs is indicated

by boxes marked L (the left reservoir) and R (the right reservoir).

which ranges from −1 to ∞, measures the interaction

strength between the left- and right-moving species. For

Q = 0 the model reduces to two independently running totally

asymmetric exclusion processes. The reason for the given

choice of rates is a simplification that it offers: The current-

density relation can be found analytically as explained in

Sec. III and can therefore be analyzed in detail. For monitoring

the microscopic position of shocks on the lattice we also

introduce a second-class particle (SCP) [11]. Our SCP is a

phantom particle, designed to track the position of a U shock.

Denoting the position of the SCP by a, the rules are

a → a + 1, if na+1 = 1, ma+1 = 0.

a → a − 1, if na−1 = 0, ma−1 = 1.

This means that the SCP moves preferentially to the right (to

the left) in a region with a high (low) density of right movers

and low (high) density of left movers. For a U shock, which

connects two such regions [see Fig. 2(b)], the above dynamical

rules favor positioning of the SCP at the middle of a local

density gradient that corresponds to a shock on macroscopic

scale. In contrast to the second-class particles in Ref. [11], our

SCP does not use the sites of the chains and should rather be

viewed as moving beside them, not interfering with regular

particles.

The bulk dynamics for chain particles (see Fig. 1) is

complemented with boundary conditions: We consider open

boundaries where at the left end of the chain a right mover can

enter the chain and it can leave it at the right end. Left movers

are hopping to the left with the same dynamic rules. Note that

in general we do not require complete left-right symmetry, so

the entrance and exit rates for different species can be different.

We choose a maximal feeding regime where we put a particle

on the entrance site once it becomes empty and take it out from

the exit site once it reaches it. The unidirectional hopping along

with the open boundaries ensure that a nonzero steady state

current is maintained.

Our results do not depend qualitatively on how exactly the

maximal feeding regime is realized. For our dynamical Monte

Carlo simulation we choose the following random sequential

update procedure. For a chain of length L, i.e., a system

of 2L sites (numbered i = 1,2, . . . ,L for right movers and
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FIG. 2. Average density profiles for right movers (thick lines) and

left movers (thin lines), above the phase transition Q = −0.4 (a) and

below the phase transition Q = −0.9 (b). The dotted curve in (b)

shows the U shock viewed from a second-class particle.

i = L + 1,L + 2, . . . ,2L for left movers) one Monte Carlo

step consists of 2L + 2 uniform drawings of an integer random

number s in the range 0 � s � 2L + 1. If 0 � s � L, the

configuration of right movers is updated. If s = 0, and the left

boundary site i = 1 is empty, we fill it with a particle (free

entrance). If s = L and the respective site contains a particle,

we remove it (free exit). For intermediate 0 < s < L, if site

s contains a particle, a hopping is performed on the right

neighboring site with given rates (1), provided it was empty.

The update of the left movers is done analogously. We start

from an empty lattice and after a transient time we measure

site occupancies nk,mk , and take averages over many Monte

Carlo steps and many histories. Typically we choose a system

size up to L = 1000 sites in each chain. The transient time for

L = 1000 is 106 Monte Carlo steps, and averaging up to ten

histories is done. We perform the measurements for different

values of the interaction parameter Q. Note that due to the

hard-core exclusion, the average densities of the right- and

left-moving particles may only take values between 0 and 1.

The maximal feeding regime usually leads to the largest

particle current since we facilitate maximally the entrance

and exit of particles at the boundary. In the absence of

interaction (Q = 0) such boundary conditions lead to a state

with average particle densities 1/2, a state with maximal

possible particle current [12,13]. In the presence of interaction

Q the stationary density profile does not undergo qualitative

changes for a vast interaction range −0.75 < Q < ∞ [see

Fig. 2(a)]. However, for values of Q < −0.75 one observes

something very unusual and different. The bulk density profile
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FIG. 3. (a) Average density profiles for right movers (thick lines)

and left movers (thin lines), for Q = −0.9 and different system sizes

N = 200,500,1000. For a better view the U shock is centered at

the origin. (b) shows the same U -shock profiles, as seen from the

second-class particle.

becomes inhomogeneous and consists of two plateaus with an

interface in the middle. The profiles of the two species are

left-right symmetric but in each plateau the densities ρ1,ρ2

of the left and right movers are different [see Fig. 2(b)]. As

the interaction becomes stronger, the difference ρ1 − ρ2 grows

and reaches the maximum ρ1 − ρ2 = 0.5 for the extreme case

Q = −1. Note that the asymmetry of the profile is not a result

of a spontaneous symmetry breaking since the profiles are

left-right symmetric and the stationary currents of both species

remain equal.

What is the nature of the observed state? The maximal

feeding regime in a bulk-driven particle system usually

produces steady states that are controlled by rarefaction waves

which (in an infinite system) are self-similar solutions of the

type ρ(x,t) = ρ( x−x0

t
) (see also Appendix A). However, the

interface in the middle cannot be a rarefaction wave because it

does not change with time. With an increase of the system size,

the interface gets wider [see Fig. 3(a)]. However, the widening

is due to a fluctuation of a position of the interface, since the U

shock seen from a second-class particle position remains size

invariant [see Fig. 3(b)]. This is a property typical of a shock.

However, the interface we observe is not a usual shock,

either. In order to see this, it is instructive to look at individual

particle trajectories across the interface [see Fig. 4]. Unlike

the trajectories running across a shock, the particles are

moving slowly (in an environment of large density) across

the left side of the lattice, and then accelerate after crossing

the inhomogeneity to the right-hand side of the lattice.

FIG. 4. Space-time trajectories of the right movers across a U

shock. Every tenth trajectory is shown. A system of 1000 sites was

equilibrated for 2 × 106 Monte Carlo steps before the trajectories

were recorded. The parameters are Q = −0.9.

Moreover, according to usual shock stability conditions, using

characteristic velocities (see details in Sec. III), the interface

shown in Fig. 2 should be unstable. As we shall argue below,

the reason for the stability and existence of the new state is an

isolated umbilic point in the current-density relation.

III. UMBILIC POINT IN A CURRENT-DENSITY

RELATION

The model (1) that we consider has the remarkable property

that the stationary distribution is a product measure [14]. The

steady state probabilities of any configuration C in a periodic

system are given by

PC = Z−1

L
∏

k=1

e−νnkmk , (3)

where nk,mk are particle occupation numbers on site k on

chains 1 and 2. With (3) the stationary currents j1 and j2 of

the right- and left-moving species can be calculated exactly as

j1(u,v) = u(1 − u) + Q�11(u,v)�00(u,v),
(4)

j2(u,v) = −v(1 − v) − Q�11(u,v)�00(u,v),

where u and v are the average densities of the right and left

movers. The quantities �11 and �00 are stationary probabilities

to have two adjacent particles and two adjacent holes, given

by

�11 =
(u + v − 1)Q− 1 +

√

[(u + v − 1)Q − 1]2 + 4Quv

2Q
,

(5)
�00 = 1 − u − v − �11.

From the stationary currents we construct the flux Jacobian

(Dj ),

(Dj ) =

(

∂j1

∂u

∂j1

∂v
∂j2

∂u

∂j2

∂v

)

. (6)
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FIG. 5. Location of the curves in the u − v plane where at least one characteristic velocity vanishes, ci(u,v) = 0, for small negative

Q = −0.5,−0.75 [(a), thick and thin lines, respectively] and large negative Q = −0.8,−0.9,−0.99 [(b), thin, medium, and thick lines,

respectively]. The point u = v = 1/2 is an umbilical point where c1 = c2 = 0 for any value of Q. For Q < −0.75, the umbilical point becomes

an isolated point.

Its two eigenvalues c1,2(u,v) play a fundamental role as

characteristic speeds of the system of conservation laws

∂tu + ∂xj1(u,v) = 0,
(7)

∂tv + ∂xj2(u,v) = 0,

which describes the coarse-grained dynamics on macroscopic

scale. Microscopically the characteristic speeds are the veloci-

ties of the localized perturbations of a stationary homogeneous

background with densities u,v [14]. As such, they determine

stability of shocks and rarefaction waves in the system.

A commonly made assumption about the flux functions

j1,j2, called strict hyperbolicity, reads as follows: the char-

acteristic speeds are different c1(u,v) �= c2(u,v) for all u,v.

Strictly hyperbolic systems have only two types of fundamen-

tal solutions: shocks and rarefaction waves [15]. As argued in

the previous section, the U shock is neither a usual shock nor a

rarefaction wave, so it cannot be stable in a strictly hyperbolic

system.

Indeed, our system is not a strictly hyperbolic one, but it

has a so-called umbilic point which is defined as a point in the

u − v density plane where the two characteristic velocities

coincide. It is straightforwardly verified from the analytic

expressions for the currents that for our system this is the

case at u∗ = v∗ = 1/2, where the two characteristic speeds

c∗
1,2 are equal and zero for all values of Q.

For a full discussion of the current-density relation (4) and

the associated flux Jacobian (6) we note that the points where

one characteristic speed vanishes generically correspond to a

family of rarefaction waves [15,16] (see also the Appendix).

Looking at the location of the points where at least one

characteristic speed vanishes, we find two different topologies,

depending on Q. For the interaction range −3/4 < Q <

∞ the umbilic point (u∗,v∗) is a crossing point of the

curves c1(u,v) = 0 and c2(u,v) = 0. For −1 � Q < −3/4,

the umbilic point (u∗,v∗) is an isolated point, and the curves

ck(u,v) = 0 do not cross (see Fig. 5).

The appearance of the isolated umbilic point is a con-

sequence of a change of topology of the current surfaces

jk(u,v,Q) from a convex to a saddle point shape at a critical

value of Qcr = −3/4. To understand from a microscopic

perspective how this happens consider a cut of the current

surface along the line v = 1 − u for small γ = Q + 1 ≪ 1. At

half-filling u = v = 1/2 the system comes into a configuration

where all adjacent sites are either both occupied or both

empty and essentially gets stuck: All hoppings from this

configuration are suppressed by a small hopping rate γ ≪ 1.

This strong interaction between the particles on the adjacent

lanes explains the occurrence of a double maximum in the

curve j (u,1 − u,Q) for Q < Qcr as shown in Fig. 6, and

respectively, to a saddle point on the surfaces jk(u,v,Q).

The appearance of the saddle point then gives rise to the

isolated umbilic point. The positions and amplitudes of the

extrema of g(u,Q) = j (u,1 − u,Q) are readily found from

(4) and (5): For Q > Qcr the j (u,1 − u,Q) curve has one

maximum at u∗
0 = 1/2, while for −1 � Q < Qcr it has three

extrema at positions u∗
0 = 1/2 and u∗

1,2 = 1
2

±
√

3Q−1 + 4/4.

 0.2

 0.1

 1 0.75 0.5 0.25 0

j(
u

,1
-u

,Q
)

u

FIG. 6. Bidirectional two-chain model. Cuts of the stationary

current surface along v = 1 − u line: j1(u,1 − u,Q) at different

Q = −0.5,−0.75,−0.9,−0.9999 (curves up to down). The cuts of

the stationary current surface along the perpendicular direction u = v

remain convex for all values of Q (data not shown).
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The respective currents are j ∗
0 =

√
Q + 1/(2

√
Q + 1 + 2)

and j ∗
1 = j ∗

2 = 1/(8|Q|).
Now we are in a position to analyze the U -shock solution.

We can identify the average bulk densities of the left plateau

u−,v− of the U shock (see Fig. 2) with u∗
1,u

∗
2, respectively,

for the following reasons: (a) We expect the U -shock plateaus,

piecewise, to be governed by a rarefaction wave, meaning

that at least one of the characteristic speeds must vanish,

ci(u−,v−) = 0. (b) We expect the stationary current amplitudes

for right- and left-moving species to be equal, due to left-right

symmetry, i.e., j1(u−,v−) = −j2(u−,v−). We readily find,

using (4) and (5), three pairs of solutions satisfying (a) and

(b): (i) (u−,v−) = (1/2,1/2), (ii) (u−,v−) = (u∗
1,u

∗
2), and

(iii) (u−,v−) = (u∗
2,u

∗
1). Comparing with the U shock, we find

(u−,v−) = (u∗
1,u

∗
2) to be the relevant solution. Indeed solution

(iii) is not compatible with our boundary conditions, while

solution (i) would result in a reduction of the particle current

and is dynamically unstable.

For the right plateau of the U shock, we find analogously

(u+,v+) = (u∗
2,u

∗
1). Apparently, the first solution (i) is unstable

for Q < Qcr. So, we have for Q < Qcr,

u−(Q) = v+(Q) =
1

2
+

√

3Q−1 + 4

4
, (8)

v−(Q) = u+(Q) =
1

2
−

√

3Q−1 + 4

4
. (9)

The stationary currents for the U shock are then given by the

jk(u∗
1,u

∗
2,Q),

jU
stat =

1

8|Q|
for Q < −

3

4
. (10)

Above the critical point, the bulk densities are u = v = 1/2,

and the stationary currents are given by jk(1/2,1/2,Q),

jstat =
√

Q + 1

2
√

Q + 1 + 2
for Q � −

3

4
. (11)

Our analytical predictions are well borne by the Monte

Carlo simulations (see Fig. 7). Note that by establishing an

inhomogeneous state (the U shock) below Qcr the system

 0

 0.05
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FIG. 7. Stationary currents of the bidirectional model at maximal

feeding as a function of Q. Circles show Monte Carlo results for a

system of size 600, while the solid curve is the theoretical prediction

[(10) and (11)]. Below the critical Q, the branch (11), indicated by

the broken line, becomes unstable [(11)].

optimizes its current, which would be strongly suppressed for

any symmetric bulk homogeneous state. This can be viewed as

a generalization of the phenomenon of a current maximization

at maximal feeding [17] to a system with two species.

We can study the phase transition in our model at Q = Qcr.

Let us choose the difference u−(Q) − v−(Q) = 
 between the

bulk densities of the right and left movers to be our order pa-

rameter. We have 
 = 0 for Q > Qcr and 
 = 1
2

√

3Q−1 + 4

for Q < Qcr. Near the transition, 
|Qcr−δq = 2
√

δq/3, so we

have a square root singularity, similar to that arising in the

Landau theory of continuous phase transitions generated by

a change of a free energy potential from a single to a double

minimum topology. On the other hand, the stationary current

is continuous across the transition point together with its first

derivative,

jstat|Qcr−δq − jstat|Qcr
= O(δq2), for δq ≪ 1.

Finally, we comment on the robustness of the U shock. The

U shock turns out to be very robust with respect to a choice

of the boundary conditions (BC). We observe the U shock

for a wide choice of BC, which, in particular, do not need to

be left-right symmetric. In order to formulate the conditions

for its appearance more precisely, we need to parametrize the

BC in terms of boundary reservoirs. Such a parametrization

involves further technical details [18] and is out of the scope

of the present paper.

The U shock is also stable with respect to a change of

the model parameters, e.g., the bulk hopping parameters, as

long as they remain left-right symmetric. In particular, the

particle-hole symmetry of the hopping rates (1), which makes

the particle current invariant with respect to u,v → 1 − u,

1 − v interchange (see Fig. 6) can be relaxed without causing

qualitative changes to a U -shock.

IV. UMBILIC POINT IN BIDIRECTIONAL MODELS

With the system we have studied, we were lucky enough

to find the stationary currents analytically and establish the

existence of the umbilic point. How exotic is this point?

Moreover, is it possible to predict, from the microscopic

transition rates, if the system will have such a point? In this

section we prove that an umbilic point with c1 = c2 = 0 is not

at all exotic and is present necessarily in bidirectional models

with left-right symmetry.

Let us consider Markov processes involving two driven

particle species which are biased in opposite directions, their

bulk dynamics (but not necessarily their boundary dynamics)

being invariant under the left-right interchange. Let us denote

the average particle densities of the two species as u,v and

the respective currents as j1(u,v),j2(u,v). From the left-right

symmetry we have j2(u,v) = −j1(v,u). Let us consider the

line of equal densities u = v. Along this line the flux Jacobian

(6) takes the form

Dj =
(

a(u) b(u)

−b(u) −a(u)

)

,

with the respective eigenvalues (characteristic speeds)

c1(u = v), c2(u = v) = ∓
√

a2 − b2. (12)
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Let us assume, in addition, that we have a restriction on a

number of particles which can occupy a single lattice site, i.e.,

that the maximally allowed density of each species is limited

to the same value max u = max v = ρmax. This assumption is

necessary for our subsequent analysis. In many applications

such a restriction is a consequence of the hard-core exclusion

interaction.

Now, let us move along the line u = v from u = 0 to the

maximally allowed value umax and assume without loss of

generality that our process evolves on two parallel chains,

umax = vmax = ρmax. Let us call the lane with right movers

lane A, and the lane with left movers lane B.

Guided by the physical meaning of the characteristic speeds

as the velocities of localized perturbations of a homogeneous

state [14], we deduce that a stationary state with small density

of right movers on one lane and small density of left movers

on another lane, attainable for u = v → 0, has characteristic

speeds of opposite signs in accordance with (12). In this limit

the left- and right-moving species are practically uncoupled

and we can attribute the positive characteristic speed to right-

moving particles cA(u = v → 0) > 0 and the negative charac-

teristic speed to the left-moving particles cB(u = v → 0) < 0.

At the other end of the line u = v → ρmax we have vanishing

density of left-moving holes in the dense background of

the right-moving particles on lane A, and similarly for the

right-moving holes on lane B. Repeating the arguments for

the characteristic speeds, we have cA(u → umax) < 0 and

cB(u → umax) = −cA(u → umax). By continuity we deduce

that there exists a point at which the characteristic speed

cA changes sign, cA(u∗ = v∗) = 0. Moreover, due to (12),

the other characteristic speed at this point also vanishes,

cB(u∗ = v∗) = 0. The point u∗ = v∗ where both characteristic

speeds vanish is an umbilic point.

This argument establishes the existence of at least one

umbilic point with c1 = c2 = 0 for left-right symmetric bulk

dynamics. Notice that the boundary conditions do not enter

the argument. Hence one may impose boundary conditions

that violate the left-right symmetry without destroying the

umbilic point. The presence of the umbilic point is a necessary

ingredient to observe a U shock, which we associate with an

isolated umbilic point: In order to become isolated, sufficiently

strong interactions between the species leading to a saddle

point topology of the current are required.

V. CONCLUSIONS

We have considered an open bidirectional two-component

driven diffusive system with left-right symmetry for the bulk

dynamics in the maximal flow regime. We havedescribed in

detail a bulk inhomogeneous solution, denoted U shock. This

solution has many properties of a usual shock—in particular,

its microscopic sharpness—but does not satisfy the usual

criteria for the stability of shocks. We have computed the

critical value of the interaction above which the U shock

exists. We have shown that the existence of the U shock

is due to the intrinsic presence of an isolated umbilic point

with vanishing characteristic velocities. No fine tuning of the

interaction strength is required above the critical value.

The U shock turns out to be robust also with respect to

changes in the boundary parameters, even if they violate the

(necessary) left-right symmetry of the bulk dynamics. In an

open system it is only necessary to maintain a stationary

maximal flow regime. More generally, we proved the existence

of an umbilic point with vanishing characteristic velocities

in any bidirectional model with left-right symmetry of the

bulk hopping rates. The presence of umbilic points crucially

alters the dynamics of the system in the hydrodynamic limit

(A1), giving rise to a variety of unusual solutions, called

undercompressed and overcompressed shocks [10]. The U

shock is one such solution. The necessary condition for a U

shock is a sufficiently strong interchain interaction, resulting

in a saddle point in the current-density surfaces.

Bidirectional models are being widely studied in the

literature, in particular, in connection with the intriguing phe-

nomenon of spontaneous symmetry breaking (SSB) [19–28].

However, we find that in most known cases the current-density

relations are convex surfaces. It would be interesting to study

SSB in the presence of an isolated umbilic point. Another

interesting problem is to explore the full phase diagram of the

open system with an umbilic point.
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APPENDIX: RAREFACTION-WAVE CONTROLLED

STATIONARY STATES

The generical importance of the points where at least one of

the characteristic speeds ci vanishes can be demonstrated by

the following argument. It is well known [15,16] that partial

differential equations of the type

∂ρk

∂t
+

∂jk(ρ1,ρ2, . . . ,ρK )

∂x
= 0, (A1)

k = 1,2, . . . K,

where K is the number of species, admit two fundamental

classes of solutions: shock waves and rarefaction waves. A

rarefaction wave is a self-similar solution of (A1), depending

only on the ratio ξ = (x − x0)/t , where x0 is the position of its

center, and t > 0. We argue that in the long-time (stationary)

limit t → ∞ the stationary bulk density ρstat generated by

a rarefaction wave has zero characteristic speed cp(ρstat) = 0.

Here ρ(x,t) is a vector, the components of which are the density

profiles ρ1(x,t),ρ2(x,t), . . . ,ρK (x,t) of the respective species.

By ρstat we denote the vector with stationary bulk densities

{ρstat
1 ,ρstat

2 , . . . ,ρstat
K }.

We search for a solution of (A1) in the form ρ(x,t) = h(ξ ).

Substituting in Eq. (A1), we obtain

−
ξ

t

∂h

∂ξ
+

1

t
(Dj)

∂h

∂ξ
= 0, (A2)

where the matrix (Dj) is the Jacobian of the flux (Dj)pq =
∂jp/∂ρq . The above equation can be rewritten as

(Dj)
∂h

∂ξ
= ξ

∂h

∂ξ
. (A3)
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In the limit t → ∞, the scaled displacement ξ = (x − x0)/

t → 0 vanishes for any finite x − x0, and the above equation

reduces to (Dj )|t→∞ h′ = 0. Each solution of this equa-

tion is an eigenvector of the flux Jacobian Dj with zero

eigenvalue. Consequently, the matrix (Dj )t→∞ = (Dj)(ρstat)

is a matrix with zero eigenvalue, i.e., at the point ρstat

at least one cp(ρstat) = 0. The respective rarefaction wave

is called a p-rarefaction wave [15,16]. Of course, in or-

der to guarantee the stability of the above discussed rar-

efaction wave with respect to local perturbations at the

boundaries, the boundary conditions have to be chosen

appropriately.
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[18] V. Popkov and G. M. Schütz, J. Stat. Mech. (2004) P12004.

[19] M. R. Evans, D. P. Foster, C. Godréche, and D. Mukamel, Phys.
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