000111886 001__ 111886
000111886 005__ 20180211184739.0
000111886 0247_ $$2DOI$$a10.1016/j.sse.2011.10.026
000111886 0247_ $$2WOS$$aWOS:000303033800017
000111886 037__ $$aPreJuSER-111886
000111886 041__ $$aeng
000111886 082__ $$a530
000111886 084__ $$2WoS$$aEngineering, Electrical & Electronic
000111886 084__ $$2WoS$$aPhysics, Applied
000111886 084__ $$2WoS$$aPhysics, Condensed Matter
000111886 1001_ $$0P:(DE-Juel1)VDB89241$$aKnoll, L.$$b0$$uFZJ
000111886 245__ $$a20 nm Gate length Schottky MOSFETs with ultra-thin NiSi/epitaxial NiSi2 source/drain
000111886 260__ $$aOxford [u.a.]$$bPergamon, Elsevier Science$$c2012
000111886 300__ $$a88 - 92
000111886 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000111886 3367_ $$2DataCite$$aOutput Types/Journal article
000111886 3367_ $$00$$2EndNote$$aJournal Article
000111886 3367_ $$2BibTeX$$aARTICLE
000111886 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000111886 3367_ $$2DRIVER$$aarticle
000111886 440_0 $$06634$$aSolid-State Electronics$$v71$$x0038-1101
000111886 500__ $$3POF3_Assignment on 2016-02-29
000111886 500__ $$aRecord converted from VDB: 16.11.2012
000111886 520__ $$aSchottky barrier (SB)-MOSFETs with NiSi and epitaxial NiSi2 S/D contacts with gate lengths as small as 20 nm are presented. Epitaxial NiSi2 FETs show higher on-currents than corresponding NiSi devices due to its lower SB height. A striking observation is that tunnelling currents through the fairly large SB decrease at very short gate lengths in SB-MOSFETs, in contrast to the scaling behavior of conventional MOSFETs. Simulations indicate that the potential in the channel increases due to overlap of the high source and drain barriers with decreasing gate length, leading to lower currents. Boron implantation into the silicide (IIS) was used to lower the SBH. Devices with epitaxial NiSi2 show an improved performance after barrier lowering by (IIS). It is shown, that the parasitic potential increase of the two S/D Schottky barriers can be either minimized by IIS and by enhanced gate control due to EOT scaling using high-k as the gate oxide. (C) 2011 Elsevier Ltd. All rights reserved.
000111886 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000111886 588__ $$aDataset connected to Web of Science
000111886 650_7 $$2WoSType$$aJ
000111886 65320 $$2Author$$aSchottky-MOSFET
000111886 65320 $$2Author$$aHigh-k
000111886 65320 $$2Author$$aScaling
000111886 65320 $$2Author$$aNiSi
000111886 65320 $$2Author$$aEpitaxial NiSi2
000111886 65320 $$2Author$$aShort channel effects
000111886 65320 $$2Author$$aSilicide source/drain
000111886 65320 $$2Author$$aImplantation into silicide
000111886 65320 $$2Author$$aDopant segregation
000111886 7001_ $$0P:(DE-Juel1)VDB97138$$aZhao, Q.T.$$b1$$uFZJ
000111886 7001_ $$0P:(DE-Juel1)VDB96622$$aLupták, R.$$b2$$uFZJ
000111886 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, S.$$b3$$uFZJ
000111886 7001_ $$0P:(DE-HGF)0$$aBourdelle, K.K.$$b4
000111886 7001_ $$0P:(DE-Juel1)VDB4959$$aMantl, S.$$b5$$uFZJ
000111886 773__ $$0PERI:(DE-600)2012825-3$$a10.1016/j.sse.2011.10.026$$gVol. 71, p. 88 - 92$$p88 - 92$$q71<88 - 92$$tSolid state electronics$$v71$$x0038-1101$$y2012
000111886 8567_ $$uhttp://dx.doi.org/10.1016/j.sse.2011.10.026
000111886 909CO $$ooai:juser.fz-juelich.de:111886$$pVDB
000111886 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000111886 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000111886 9141_ $$y2012
000111886 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000111886 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000111886 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000111886 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000111886 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000111886 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000111886 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000111886 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000111886 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000111886 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000111886 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000111886 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000111886 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$gPGI$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000111886 970__ $$aVDB:(DE-Juel1)140502
000111886 980__ $$aVDB
000111886 980__ $$aConvertedRecord
000111886 980__ $$ajournal
000111886 980__ $$aI:(DE-82)080009_20140620
000111886 980__ $$aI:(DE-Juel1)PGI-9-20110106
000111886 980__ $$aUNRESTRICTED
000111886 981__ $$aI:(DE-Juel1)PGI-9-20110106
000111886 981__ $$aI:(DE-Juel1)VDB881