Hauptseite > Publikationsdatenbank > 20 nm Gate length Schottky MOSFETs with ultra-thin NiSi/epitaxial NiSi2 source/drain > print |
001 | 111886 | ||
005 | 20180211184739.0 | ||
024 | 7 | _ | |2 DOI |a 10.1016/j.sse.2011.10.026 |
024 | 7 | _ | |2 WOS |a WOS:000303033800017 |
037 | _ | _ | |a PreJuSER-111886 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 530 |
084 | _ | _ | |2 WoS |a Engineering, Electrical & Electronic |
084 | _ | _ | |2 WoS |a Physics, Applied |
084 | _ | _ | |2 WoS |a Physics, Condensed Matter |
100 | 1 | _ | |a Knoll, L. |b 0 |u FZJ |0 P:(DE-Juel1)VDB89241 |
245 | _ | _ | |a 20 nm Gate length Schottky MOSFETs with ultra-thin NiSi/epitaxial NiSi2 source/drain |
260 | _ | _ | |a Oxford [u.a.] |b Pergamon, Elsevier Science |c 2012 |
300 | _ | _ | |a 88 - 92 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |a Solid-State Electronics |x 0038-1101 |0 6634 |v 71 |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
500 | _ | _ | |a Record converted from VDB: 16.11.2012 |
520 | _ | _ | |a Schottky barrier (SB)-MOSFETs with NiSi and epitaxial NiSi2 S/D contacts with gate lengths as small as 20 nm are presented. Epitaxial NiSi2 FETs show higher on-currents than corresponding NiSi devices due to its lower SB height. A striking observation is that tunnelling currents through the fairly large SB decrease at very short gate lengths in SB-MOSFETs, in contrast to the scaling behavior of conventional MOSFETs. Simulations indicate that the potential in the channel increases due to overlap of the high source and drain barriers with decreasing gate length, leading to lower currents. Boron implantation into the silicide (IIS) was used to lower the SBH. Devices with epitaxial NiSi2 show an improved performance after barrier lowering by (IIS). It is shown, that the parasitic potential increase of the two S/D Schottky barriers can be either minimized by IIS and by enhanced gate control due to EOT scaling using high-k as the gate oxide. (C) 2011 Elsevier Ltd. All rights reserved. |
536 | _ | _ | |a Grundlagen für zukünftige Informationstechnologien |c P42 |2 G:(DE-HGF) |0 G:(DE-Juel1)FUEK412 |x 0 |
588 | _ | _ | |a Dataset connected to Web of Science |
650 | _ | 7 | |a J |2 WoSType |
653 | 2 | 0 | |2 Author |a Schottky-MOSFET |
653 | 2 | 0 | |2 Author |a High-k |
653 | 2 | 0 | |2 Author |a Scaling |
653 | 2 | 0 | |2 Author |a NiSi |
653 | 2 | 0 | |2 Author |a Epitaxial NiSi2 |
653 | 2 | 0 | |2 Author |a Short channel effects |
653 | 2 | 0 | |2 Author |a Silicide source/drain |
653 | 2 | 0 | |2 Author |a Implantation into silicide |
653 | 2 | 0 | |2 Author |a Dopant segregation |
700 | 1 | _ | |a Zhao, Q.T. |b 1 |u FZJ |0 P:(DE-Juel1)VDB97138 |
700 | 1 | _ | |a Lupták, R. |b 2 |u FZJ |0 P:(DE-Juel1)VDB96622 |
700 | 1 | _ | |a Trellenkamp, S. |b 3 |u FZJ |0 P:(DE-Juel1)128856 |
700 | 1 | _ | |a Bourdelle, K.K. |b 4 |0 P:(DE-HGF)0 |
700 | 1 | _ | |a Mantl, S. |b 5 |u FZJ |0 P:(DE-Juel1)VDB4959 |
773 | _ | _ | |0 PERI:(DE-600)2012825-3 |a 10.1016/j.sse.2011.10.026 |g Vol. 71, p. 88 - 92 |p 88 - 92 |q 71<88 - 92 |t Solid state electronics |v 71 |x 0038-1101 |y 2012 |
856 | 7 | _ | |u http://dx.doi.org/10.1016/j.sse.2011.10.026 |
909 | C | O | |o oai:juser.fz-juelich.de:111886 |p VDB |
913 | 1 | _ | |b Schlüsseltechnologien |k P42 |l Grundlagen für zukünftige Informationstechnologien (FIT) |1 G:(DE-HGF)POF2-420 |0 G:(DE-Juel1)FUEK412 |2 G:(DE-HGF)POF2-400 |v Grundlagen für zukünftige Informationstechnologien |x 0 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
914 | 1 | _ | |y 2012 |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology |g JARA |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |g PGI |x 0 |
970 | _ | _ | |a VDB:(DE-Juel1)140502 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
981 | _ | _ | |a I:(DE-Juel1)VDB881 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|