000111906 001__ 111906
000111906 005__ 20200402210033.0
000111906 0247_ $$2pmid$$apmid:22045336
000111906 0247_ $$2pmc$$apmc:PMC3273382
000111906 0247_ $$2DOI$$a10.1038/emboj.2011.366
000111906 0247_ $$2WOS$$aWOS:000300871700019
000111906 0247_ $$2altmetric$$aaltmetric:21819279
000111906 037__ $$aPreJuSER-111906
000111906 041__ $$aeng
000111906 082__ $$a570
000111906 1001_ $$0P:(DE-HGF)0$$aCong, Y$$b0
000111906 245__ $$aSymmetry-Free Cryo-EM Structures of the Chaperonin TRiC Along its ATPase-Driven Conformational Cycle
000111906 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2011
000111906 300__ $$a720 - 730
000111906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000111906 3367_ $$2DataCite$$aOutput Types/Journal article
000111906 3367_ $$00$$2EndNote$$aJournal Article
000111906 3367_ $$2BibTeX$$aARTICLE
000111906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000111906 3367_ $$2DRIVER$$aarticle
000111906 440_0 $$01793$$aEmbo Journal$$v31$$x0261-4189$$y3
000111906 500__ $$3POF3_Assignment on 2016-02-29
000111906 500__ $$aRecord converted from VDB: 16.11.2012
000111906 520__ $$aThe eukaryotic group II chaperonin TRiC/CCT is a 16-subunit complex with eight distinct but similar subunits arranged in two stacked rings. Substrate folding inside the central chamber is triggered by ATP hydrolysis. We present five cryo-EM structures of TRiC in apo and nucleotide-induced states without imposing symmetry during the 3D reconstruction. These structures reveal the intra- and inter-ring subunit interaction pattern changes during the ATPase cycle. In the apo state, the subunit arrangement in each ring is highly asymmetric, whereas all nucleotide-containing states tend to be more symmetrical. We identify and structurally characterize an one-ring closed intermediate induced by ATP hydrolysis wherein the closed TRiC ring exhibits an observable chamber expansion. This likely represents the physiological substrate folding state. Our structural results suggest mechanisms for inter-ring-negative cooperativity, intra-ring-positive cooperativity, and protein-folding chamber closure of TRiC. Intriguingly, these mechanisms are different from other group I and II chaperonins despite their similar architecture.
000111906 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000111906 536__ $$0G:(DE-Juel1)FUEK505$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x1
000111906 588__ $$aDataset connected to Pubmed
000111906 650_2 $$2MeSH$$aAdenosine Triphosphatases: metabolism
000111906 650_2 $$2MeSH$$aChaperonins: chemistry
000111906 650_2 $$2MeSH$$aChaperonins: metabolism
000111906 650_2 $$2MeSH$$aCryoelectron Microscopy
000111906 650_2 $$2MeSH$$aHydrolysis
000111906 650_2 $$2MeSH$$aModels, Molecular
000111906 650_2 $$2MeSH$$aProtein Conformation
000111906 650_2 $$2MeSH$$aProtein Folding
000111906 650_7 $$0EC 3.6.1.-$$2NLM Chemicals$$aAdenosine Triphosphatases
000111906 650_7 $$0EC 3.6.1.-$$2NLM Chemicals$$aChaperonins
000111906 7001_ $$0P:(DE-Juel1)132018$$aSchröder, G.F.$$b1$$uFZJ
000111906 7001_ $$0P:(DE-HGF)0$$aMeyer, A.S.$$b2
000111906 7001_ $$0P:(DE-HGF)0$$aJakana, J.$$b3
000111906 7001_ $$0P:(DE-HGF)0$$aMa, B.$$b4
000111906 7001_ $$0P:(DE-HGF)0$$aDougherty, M.T.$$b5
000111906 7001_ $$0P:(DE-HGF)0$$aSchmid, M.F.$$b6
000111906 7001_ $$0P:(DE-HGF)0$$aReissmann, S.$$b7
000111906 7001_ $$0P:(DE-HGF)0$$aLevitt, M.$$b8
000111906 7001_ $$0P:(DE-HGF)0$$aLudtke, S.L.$$b9
000111906 7001_ $$0P:(DE-HGF)0$$aFrydman, J.$$b10
000111906 7001_ $$0P:(DE-HGF)0$$aChiu, W.$$b11
000111906 773__ $$0PERI:(DE-600)1467419-1$$a10.1038/emboj.2011.366$$gVol. 31, p. 720 - 730$$p720 - 730$$q31<720 - 730$$tThe @EMBO journal online$$v31$$x0261-4189$$y2011
000111906 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273382
000111906 909CO $$ooai:juser.fz-juelich.de:111906$$pVDB
000111906 9141_ $$y2012
000111906 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000111906 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000111906 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000111906 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000111906 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000111906 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000111906 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000111906 9131_ $$0G:(DE-Juel1)FUEK409$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000111906 9131_ $$0G:(DE-Juel1)FUEK505$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x1
000111906 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000111906 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$gICS$$kICS-6$$lStrukturbiochemie$$x0
000111906 970__ $$aVDB:(DE-Juel1)140537
000111906 980__ $$aVDB
000111906 980__ $$aConvertedRecord
000111906 980__ $$ajournal
000111906 980__ $$aI:(DE-Juel1)ICS-6-20110106
000111906 980__ $$aUNRESTRICTED
000111906 981__ $$aI:(DE-Juel1)IBI-7-20200312