000111908 001__ 111908
000111908 005__ 20200402205949.0
000111908 0247_ $$2pmid$$apmid:22659006
000111908 0247_ $$2DOI$$a10.1016/j.jmb.2012.05.031
000111908 0247_ $$2WOS$$aWOS:000308681000010
000111908 037__ $$aPreJuSER-111908
000111908 041__ $$aeng
000111908 082__ $$a570
000111908 084__ $$2WoS$$aBiochemistry & Molecular Biology
000111908 1001_ $$0P:(DE-HGF)0$$aYu, X.$$b0
000111908 245__ $$aFilaments from Ignicoccus hospitalis Show Diversity of Packing in Proteins Containing N-terminal Type IV Pilin Helices
000111908 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2012
000111908 300__ $$a274 - 281
000111908 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000111908 3367_ $$2DataCite$$aOutput Types/Journal article
000111908 3367_ $$00$$2EndNote$$aJournal Article
000111908 3367_ $$2BibTeX$$aARTICLE
000111908 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000111908 3367_ $$2DRIVER$$aarticle
000111908 440_0 $$03552$$aJournal of Molecular Biology$$v422$$x0022-2836$$y2
000111908 500__ $$3POF3_Assignment on 2016-02-29
000111908 500__ $$aThis work was supported by National Institutes of Health grant EB001567 (to E.H.E.) and by WI 731/10-1 from the Deutsche Forschungsgemeinschaft (to R.W. and R.R.).
000111908 520__ $$aBacterial motility is driven by the rotation of flagellar filaments that supercoil. The supercoiling involves the switching of coiled-coil protofilaments between two different states. In archaea, the flagellar filaments responsible for motility are formed by proteins with distinct homology in their N-terminal portion to bacterial Type IV pilins. The bacterial pilins have a single N-terminal hydrophobic α-helix, not the coiled coil found in flagellin. We have used electron cryo-microscopy to study the adhesion filaments from the archaeon Ignicoccus hospitalis. While I. hospitalis is non-motile, these filaments make transitions between rigid stretches and curved regions and appear morphologically similar to true archaeal flagellar filaments. A resolution of ~7.5Å allows us to unambiguously build a model for the packing of these N-terminal α-helices, and this packing is different from several bacterial Type IV pili whose structure has been analyzed by electron microscopy and modeling. Our results show that the mechanism responsible for the supercoiling of bacterial flagellar filaments cannot apply to archaeal filaments.
000111908 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000111908 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x1
000111908 588__ $$aDataset connected to Web of Science, Pubmed
000111908 65320 $$2Author$$aelectron microscopy
000111908 65320 $$2Author$$ahelical polymers
000111908 65320 $$2Author$$aconvergent evolution
000111908 65320 $$2Author$$aarchaea
000111908 650_2 $$2MeSH$$aArchaeal Proteins: chemistry
000111908 650_2 $$2MeSH$$aArchaeal Proteins: metabolism
000111908 650_2 $$2MeSH$$aCryoelectron Microscopy
000111908 650_2 $$2MeSH$$aDesulfurococcaceae: metabolism
000111908 650_2 $$2MeSH$$aFimbriae Proteins: chemistry
000111908 650_2 $$2MeSH$$aFimbriae Proteins: metabolism
000111908 650_2 $$2MeSH$$aModels, Molecular
000111908 650_2 $$2MeSH$$aProtein Structure, Secondary
000111908 650_7 $$00$$2NLM Chemicals$$aArchaeal Proteins
000111908 650_7 $$0147680-16-8$$2NLM Chemicals$$aFimbriae Proteins
000111908 650_7 $$2WoSType$$aJ
000111908 7001_ $$0P:(DE-HGF)0$$aGoforth, C.$$b1
000111908 7001_ $$0P:(DE-HGF)0$$aMeyer, C.$$b2
000111908 7001_ $$0P:(DE-HGF)0$$aRachel, R.$$b3
000111908 7001_ $$0P:(DE-HGF)0$$aWirth, R.$$b4
000111908 7001_ $$0P:(DE-Juel1)132018$$aSchröder, G.F.$$b5$$uFZJ
000111908 7001_ $$0P:(DE-HGF)0$$aEgelman, E.H.$$b6
000111908 773__ $$0PERI:(DE-600)1355192-9$$a10.1016/j.jmb.2012.05.031$$gVol. 422, p. 274 - 281$$p274 - 281$$q422<274 - 281$$tJournal of molecular biology$$v422$$x0022-2836$$y2012
000111908 8567_ $$uhttp://dx.doi.org/10.1016/j.jmb.2012.05.031
000111908 909CO $$ooai:juser.fz-juelich.de:111908$$pVDB
000111908 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000111908 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000111908 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000111908 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000111908 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000111908 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000111908 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000111908 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000111908 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000111908 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000111908 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000111908 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000111908 9141_ $$y2012
000111908 9131_ $$0G:(DE-Juel1)FUEK409$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000111908 9131_ $$0G:(DE-Juel1)FUEK505$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x1
000111908 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000111908 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$gICS$$kICS-6$$lStrukturbiochemie$$x0
000111908 970__ $$aVDB:(DE-Juel1)140539
000111908 980__ $$aVDB
000111908 980__ $$aConvertedRecord
000111908 980__ $$ajournal
000111908 980__ $$aI:(DE-Juel1)ICS-6-20110106
000111908 980__ $$aUNRESTRICTED
000111908 981__ $$aI:(DE-Juel1)IBI-7-20200312