001     111908
005     20200402205949.0
024 7 _ |2 pmid
|a pmid:22659006
024 7 _ |2 DOI
|a 10.1016/j.jmb.2012.05.031
024 7 _ |2 WOS
|a WOS:000308681000010
037 _ _ |a PreJuSER-111908
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
100 1 _ |0 P:(DE-HGF)0
|a Yu, X.
|b 0
245 _ _ |a Filaments from Ignicoccus hospitalis Show Diversity of Packing in Proteins Containing N-terminal Type IV Pilin Helices
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2012
300 _ _ |a 274 - 281
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3552
|a Journal of Molecular Biology
|v 422
|x 0022-2836
|y 2
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a This work was supported by National Institutes of Health grant EB001567 (to E.H.E.) and by WI 731/10-1 from the Deutsche Forschungsgemeinschaft (to R.W. and R.R.).
520 _ _ |a Bacterial motility is driven by the rotation of flagellar filaments that supercoil. The supercoiling involves the switching of coiled-coil protofilaments between two different states. In archaea, the flagellar filaments responsible for motility are formed by proteins with distinct homology in their N-terminal portion to bacterial Type IV pilins. The bacterial pilins have a single N-terminal hydrophobic α-helix, not the coiled coil found in flagellin. We have used electron cryo-microscopy to study the adhesion filaments from the archaeon Ignicoccus hospitalis. While I. hospitalis is non-motile, these filaments make transitions between rigid stretches and curved regions and appear morphologically similar to true archaeal flagellar filaments. A resolution of ~7.5Å allows us to unambiguously build a model for the packing of these N-terminal α-helices, and this packing is different from several bacterial Type IV pili whose structure has been analyzed by electron microscopy and modeling. Our results show that the mechanism responsible for the supercoiling of bacterial flagellar filaments cannot apply to archaeal filaments.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|a Funktion und Dysfunktion des Nervensystems
|c P33
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Archaeal Proteins: chemistry
650 _ 2 |2 MeSH
|a Archaeal Proteins: metabolism
650 _ 2 |2 MeSH
|a Cryoelectron Microscopy
650 _ 2 |2 MeSH
|a Desulfurococcaceae: metabolism
650 _ 2 |2 MeSH
|a Fimbriae Proteins: chemistry
650 _ 2 |2 MeSH
|a Fimbriae Proteins: metabolism
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Protein Structure, Secondary
650 _ 7 |0 0
|2 NLM Chemicals
|a Archaeal Proteins
650 _ 7 |0 147680-16-8
|2 NLM Chemicals
|a Fimbriae Proteins
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a electron microscopy
653 2 0 |2 Author
|a helical polymers
653 2 0 |2 Author
|a convergent evolution
653 2 0 |2 Author
|a archaea
700 1 _ |0 P:(DE-HGF)0
|a Goforth, C.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Meyer, C.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Rachel, R.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Wirth, R.
|b 4
700 1 _ |0 P:(DE-Juel1)132018
|a Schröder, G.F.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Egelman, E.H.
|b 6
773 _ _ |0 PERI:(DE-600)1355192-9
|a 10.1016/j.jmb.2012.05.031
|g Vol. 422, p. 274 - 281
|p 274 - 281
|q 422<274 - 281
|t Journal of molecular biology
|v 422
|x 0022-2836
|y 2012
856 7 _ |u http://dx.doi.org/10.1016/j.jmb.2012.05.031
909 C O |o oai:juser.fz-juelich.de:111908
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK409
|1 G:(DE-HGF)POF2-330
|2 G:(DE-HGF)POF2-300
|a DE-HGF
|b Gesundheit
|k P33
|l Funktion und Dysfunktion des Nervensystems
|v Funktion und Dysfunktion des Nervensystems
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK505
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 1
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-559H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|g ICS
|k ICS-6
|l Strukturbiochemie
|x 0
970 _ _ |a VDB:(DE-Juel1)140539
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21