000111944 001__ 111944
000111944 005__ 20240708133916.0
000111944 0247_ $$2pmid$$apmid:22900520
000111944 0247_ $$2DOI$$a10.1021/es301878y
000111944 0247_ $$2WOS$$aWOS:000308787800024
000111944 0247_ $$2ISSN$$a0013-936X
000111944 0247_ $$2ISSN$$a1520-5851
000111944 037__ $$aPreJuSER-111944
000111944 041__ $$aeng
000111944 082__ $$a050
000111944 082__ $$a050
000111944 1001_ $$0P:(DE-HGF)0$$aFinck, N.$$b0
000111944 245__ $$aSelenide Retention by Mackinawite
000111944 260__ $$aColumbus, Ohio$$aColumbus, Ohio$$bAmerican Chemical Society$$bAmerican Chemical Society$$c2012
000111944 300__ $$a10004 - 10011
000111944 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000111944 3367_ $$2DataCite$$aOutput Types/Journal article
000111944 3367_ $$00$$2EndNote$$aJournal Article
000111944 3367_ $$2BibTeX$$aARTICLE
000111944 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000111944 3367_ $$2DRIVER$$aarticle
000111944 440_0 $$01865$$aEnvironmental Science and Technology$$v46$$x0013-936X$$y18
000111944 500__ $$aRecord converted from VDB: 16.11.2012
000111944 520__ $$aThe isotope (79)Se may be of great concern with regard to the safe disposal of nuclear wastes in deep geological repositories due to its long half-life and potential mobility in the geosphere. The Se mobility is controlled by the oxidation state: the oxidized species (Se(IV)) and (Se(VI)) are highly mobile, whereas the reduced species (Se(0) and Se(-II)) form low soluble solids. The mobility of this trace pollutant can be greatly reduced by interacting with the various barriers of the repository. Numerous studies report on the oxidized species retention by mineral phases, but only very scarce studies report on the selenide (Se(-II)) retention. In the present study, the selenide retention by coprecipitation with and by adsorption on mackinawite (FeS) was investigated. XRD and SEM analyses of the samples reveal no significant influence of Se on the mackinawite precipitate morphology and structure. Samples from coprecipitation and from adsorption are characterized at the molecular scale by a multi-edge X-ray absorption spectroscopy (XAS) investigation. In the coprecipitation experiment, all elements (S, Fe, and Se) are in a low ionic oxidation state and the EXAFS data strongly point to selenium located in a mackinawite-like sulfide environment. By contacting selenide ions with FeS in suspension, part of Se is located in an environment similar to that found in the coprecipitation experiment. The explanation is a dynamical dissolution-recrystallization mechanism of the highly reactive mackinawite. This is the first experimental study to report on selenide incorporation in iron monosulfide by a multi-edge XAS approach.
000111944 536__ $$0G:(DE-Juel1)FUEK404$$2G:(DE-HGF)$$aNukleare Sicherheitsforschung$$cP14$$x0
000111944 588__ $$aDataset connected to Pubmed
000111944 7001_ $$0P:(DE-HGF)0$$aDardenne, K.$$b1
000111944 7001_ $$0P:(DE-Juel1)130324$$aBosbach, D.$$b2$$uFZJ
000111944 7001_ $$0P:(DE-HGF)0$$aGeckeis, H.$$b3
000111944 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/es301878y$$gp. 10004 - 10011$$p10004 - 10011$$q10004 - 10011$$tEnvironmental science & technology$$x0013-936X$$y2012
000111944 8567_ $$uhttp://dx.doi.org/10.1021/es301878y
000111944 909CO $$ooai:juser.fz-juelich.de:111944$$pVDB
000111944 9131_ $$0G:(DE-Juel1)FUEK404$$1G:(DE-HGF)POF2-140$$2G:(DE-HGF)POF2-100$$bEnergie$$kP14$$lNukleare Sicherheitsforschung$$vNukleare Sicherheitsforschung$$x0
000111944 9132_ $$0G:(DE-HGF)POF3-161$$1G:(DE-HGF)POF3-160$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung und Sicherheit sowie Strahlenforschung$$vNuclear Waste Management$$x0
000111944 9141_ $$y2012
000111944 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000111944 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000111944 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000111944 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000111944 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000111944 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000111944 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000111944 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000111944 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000111944 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000111944 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000111944 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000111944 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000111944 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000111944 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$gIEK$$kIEK-6$$lSicherheitsforschung und Reaktortechnik$$x0
000111944 970__ $$aVDB:(DE-Juel1)140579
000111944 980__ $$aVDB
000111944 980__ $$aConvertedRecord
000111944 980__ $$ajournal
000111944 980__ $$aI:(DE-Juel1)IEK-6-20101013
000111944 980__ $$aUNRESTRICTED
000111944 981__ $$aI:(DE-Juel1)IFN-2-20101013