000111944 001__ 111944 000111944 005__ 20240708133916.0 000111944 0247_ $$2pmid$$apmid:22900520 000111944 0247_ $$2DOI$$a10.1021/es301878y 000111944 0247_ $$2WOS$$aWOS:000308787800024 000111944 0247_ $$2ISSN$$a0013-936X 000111944 0247_ $$2ISSN$$a1520-5851 000111944 037__ $$aPreJuSER-111944 000111944 041__ $$aeng 000111944 082__ $$a050 000111944 082__ $$a050 000111944 1001_ $$0P:(DE-HGF)0$$aFinck, N.$$b0 000111944 245__ $$aSelenide Retention by Mackinawite 000111944 260__ $$aColumbus, Ohio$$aColumbus, Ohio$$bAmerican Chemical Society$$bAmerican Chemical Society$$c2012 000111944 300__ $$a10004 - 10011 000111944 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000111944 3367_ $$2DataCite$$aOutput Types/Journal article 000111944 3367_ $$00$$2EndNote$$aJournal Article 000111944 3367_ $$2BibTeX$$aARTICLE 000111944 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000111944 3367_ $$2DRIVER$$aarticle 000111944 440_0 $$01865$$aEnvironmental Science and Technology$$v46$$x0013-936X$$y18 000111944 500__ $$aRecord converted from VDB: 16.11.2012 000111944 520__ $$aThe isotope (79)Se may be of great concern with regard to the safe disposal of nuclear wastes in deep geological repositories due to its long half-life and potential mobility in the geosphere. The Se mobility is controlled by the oxidation state: the oxidized species (Se(IV)) and (Se(VI)) are highly mobile, whereas the reduced species (Se(0) and Se(-II)) form low soluble solids. The mobility of this trace pollutant can be greatly reduced by interacting with the various barriers of the repository. Numerous studies report on the oxidized species retention by mineral phases, but only very scarce studies report on the selenide (Se(-II)) retention. In the present study, the selenide retention by coprecipitation with and by adsorption on mackinawite (FeS) was investigated. XRD and SEM analyses of the samples reveal no significant influence of Se on the mackinawite precipitate morphology and structure. Samples from coprecipitation and from adsorption are characterized at the molecular scale by a multi-edge X-ray absorption spectroscopy (XAS) investigation. In the coprecipitation experiment, all elements (S, Fe, and Se) are in a low ionic oxidation state and the EXAFS data strongly point to selenium located in a mackinawite-like sulfide environment. By contacting selenide ions with FeS in suspension, part of Se is located in an environment similar to that found in the coprecipitation experiment. The explanation is a dynamical dissolution-recrystallization mechanism of the highly reactive mackinawite. This is the first experimental study to report on selenide incorporation in iron monosulfide by a multi-edge XAS approach. 000111944 536__ $$0G:(DE-Juel1)FUEK404$$2G:(DE-HGF)$$aNukleare Sicherheitsforschung$$cP14$$x0 000111944 588__ $$aDataset connected to Pubmed 000111944 7001_ $$0P:(DE-HGF)0$$aDardenne, K.$$b1 000111944 7001_ $$0P:(DE-Juel1)130324$$aBosbach, D.$$b2$$uFZJ 000111944 7001_ $$0P:(DE-HGF)0$$aGeckeis, H.$$b3 000111944 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/es301878y$$gp. 10004 - 10011$$p10004 - 10011$$q10004 - 10011$$tEnvironmental science & technology$$x0013-936X$$y2012 000111944 8567_ $$uhttp://dx.doi.org/10.1021/es301878y 000111944 909CO $$ooai:juser.fz-juelich.de:111944$$pVDB 000111944 9131_ $$0G:(DE-Juel1)FUEK404$$1G:(DE-HGF)POF2-140$$2G:(DE-HGF)POF2-100$$bEnergie$$kP14$$lNukleare Sicherheitsforschung$$vNukleare Sicherheitsforschung$$x0 000111944 9132_ $$0G:(DE-HGF)POF3-161$$1G:(DE-HGF)POF3-160$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung und Sicherheit sowie Strahlenforschung$$vNuclear Waste Management$$x0 000111944 9141_ $$y2012 000111944 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000111944 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000111944 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000111944 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000111944 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000111944 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000111944 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000111944 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000111944 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000111944 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000111944 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000111944 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000111944 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000111944 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000111944 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$gIEK$$kIEK-6$$lSicherheitsforschung und Reaktortechnik$$x0 000111944 970__ $$aVDB:(DE-Juel1)140579 000111944 980__ $$aVDB 000111944 980__ $$aConvertedRecord 000111944 980__ $$ajournal 000111944 980__ $$aI:(DE-Juel1)IEK-6-20101013 000111944 980__ $$aUNRESTRICTED 000111944 981__ $$aI:(DE-Juel1)IFN-2-20101013