000111950 001__ 111950
000111950 005__ 20200702121632.0
000111950 0247_ $$2pmid$$apmid:22577185
000111950 0247_ $$2pmc$$apmc:PMC3421980
000111950 0247_ $$2DOI$$a10.1093/jxb/ers095
000111950 0247_ $$2WOS$$aWOS:000307821100005
000111950 037__ $$aPreJuSER-111950
000111950 041__ $$aeng
000111950 082__ $$a580
000111950 084__ $$2WoS$$aPlant Sciences
000111950 1001_ $$0P:(DE-HGF)0$$aVandoorne, B.$$b0
000111950 245__ $$aWater stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis
000111950 260__ $$aOxford$$bUniv. Press$$c2012
000111950 300__ $$a4359 - 4373
000111950 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000111950 3367_ $$2DataCite$$aOutput Types/Journal article
000111950 3367_ $$00$$2EndNote$$aJournal Article
000111950 3367_ $$2BibTeX$$aARTICLE
000111950 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000111950 3367_ $$2DRIVER$$aarticle
000111950 440_0 $$03318$$aJournal of Experimental Botany$$v63$$x0022-0957$$y12
000111950 500__ $$3POF3_Assignment on 2016-02-29
000111950 500__ $$aThis work was supported by the Region Wallonne (DGTRE) of Belgium through the subventions D31-1062, D31-1123, and D31-1175 and by the Fonds National de la Recherche Scientifique (FNRS; convention no. 1.5.111.10F). The authors are also very grateful to FNRS for the PhD research grant of BV (Aspirant FNRS) and to B. Van Pee, B. Capelle, and H. Dailly (CARI-UCL) for their valuable technical assistance.
000111950 520__ $$aRoot chicory (Cichorium intybus var. sativum) is a cash crop cultivated for inulin production in Western Europe. This plant can be exposed to severe water stress during the last 3 months of its 6-month growing period. The aim of this study was to quantify the effect of a progressive decline in water availability on plant growth, photosynthesis, and sugar metabolism and to determine its impact on inulin production. Water stress drastically decreased fresh and dry root weight, leaf number, total leaf area, and stomatal conductance. Stressed plants, however, increased their water-use efficiency and leaf soluble sugar concentration, decreased the shoot-to-root ratio and lowered their osmotic potential. Despite a decrease in photosynthetic pigments, the photosynthesis light phase remained unaffected under water stress. Water stress increased sucrose phosphate synthase activity in the leaves but not in the roots. Water stress inhibited sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1 fructosyltransferase after 19 weeks of culture and slightly increased fructan 1-exohydrolase activity. The root inulin concentration, expressed on a dry-weight basis, and the mean degree of polymerization of the inulin chain remained unaffected by water stress. Root chicory displayed resistance to water stress, but that resistance was obtained at the expense of growth, which in turn led to a significant decrease in inulin production.
000111950 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000111950 588__ $$aDataset connected to Web of Science, Pubmed
000111950 65320 $$2Author$$aCichorium intybus
000111950 65320 $$2Author$$adrought
000111950 65320 $$2Author$$agrowth
000111950 65320 $$2Author$$ainulin
000111950 65320 $$2Author$$aphotosynthesis
000111950 65320 $$2Author$$aroot chicory
000111950 65320 $$2Author$$asugar metabolism
000111950 65320 $$2Author$$awater deficit
000111950 65320 $$2Author$$awater stress
000111950 650_7 $$2WoSType$$aJ
000111950 7001_ $$0P:(DE-HGF)0$$aMathieu, A.S.$$b1
000111950 7001_ $$0P:(DE-HGF)0$$aVan den Ende, W.$$b2
000111950 7001_ $$0P:(DE-HGF)0$$aVergauwen, R.$$b3
000111950 7001_ $$0P:(DE-HGF)0$$aPerilleux, C.$$b4
000111950 7001_ $$0P:(DE-Juel1)129477$$aJavaux, M.$$b5$$uFZJ
000111950 7001_ $$0P:(DE-HGF)0$$aLutts, S.$$b6
000111950 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/ers095$$gVol. 63, p. 4359 - 4373$$p4359 - 4373$$q63<4359 - 4373$$tThe @journal of experimental botany$$v63$$x0022-0957$$y2012
000111950 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421980
000111950 909CO $$ooai:juser.fz-juelich.de:111950$$pVDB$$pVDB:Earth_Environment
000111950 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000111950 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000111950 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000111950 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000111950 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000111950 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000111950 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000111950 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000111950 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000111950 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000111950 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000111950 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000111950 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000111950 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000111950 9141_ $$y2012
000111950 9131_ $$0G:(DE-Juel1)FUEK407$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000111950 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000111950 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000111950 970__ $$aVDB:(DE-Juel1)140596
000111950 980__ $$aVDB
000111950 980__ $$aConvertedRecord
000111950 980__ $$ajournal
000111950 980__ $$aI:(DE-Juel1)IBG-3-20101118
000111950 980__ $$aUNRESTRICTED