000111955 001__ 111955
000111955 005__ 20200702121632.0
000111955 0247_ $$2DOI$$a10.1029/2011WR011062
000111955 0247_ $$2WOS$$aWOS:000306000600001
000111955 0247_ $$2Handle$$a2128/17057
000111955 037__ $$aPreJuSER-111955
000111955 041__ $$aeng
000111955 082__ $$a550
000111955 084__ $$2WoS$$aEnvironmental Sciences
000111955 084__ $$2WoS$$aLimnology
000111955 084__ $$2WoS$$aWater Resources
000111955 1001_ $$0P:(DE-HGF)0$$aErdal, D.$$b0
000111955 245__ $$aEstimating effective model parameters for heterogeneous unsaturated flow using error models for bias correction
000111955 260__ $$aWashington, DC$$bAGU$$c2012
000111955 300__ $$aW06530
000111955 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000111955 3367_ $$2DataCite$$aOutput Types/Journal article
000111955 3367_ $$00$$2EndNote$$aJournal Article
000111955 3367_ $$2BibTeX$$aARTICLE
000111955 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000111955 3367_ $$2DRIVER$$aarticle
000111955 440_0 $$05958$$aWater Resources Research$$v48$$x0043-1397
000111955 500__ $$3POF3_Assignment on 2016-02-29
000111955 500__ $$aRecord converted from VDB: 16.11.2012
000111955 520__ $$aEstimates of effective parameters for unsaturated flow models are typically based on observations taken on length scales smaller than the modeling scale. This complicates parameter estimation for heterogeneous soil structures. In this paper we attempt to account for soil structure not present in the flow model by using so-called external error models, which correct for bias in the likelihood function of a parameter estimation algorithm. The performance of external error models are investigated using data from three virtual reality experiments and one real world experiment. All experiments are multistep outflow and inflow experiments in columns packed with two sand types with different structures. First, effective parameters for equivalent homogeneous models for the different columns were estimated using soil moisture measurements taken at a few locations. This resulted in parameters that had a low predictive power for the averaged states of the soil moisture if the measurements did not adequately capture a representative elementary volume of the heterogeneous soil column. Second, parameter estimation was performed using error models that attempted to correct for bias introduced by soil structure not taken into account in the first estimation. Three different error models that required different amounts of prior knowledge about the heterogeneous structure were considered. The results showed that the introduction of an error model can help to obtain effective parameters with more predictive power with respect to the average soil water content in the system. This was especially true when the dynamic behavior of the flow process was analyzed.
000111955 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000111955 588__ $$aDataset connected to Web of Science
000111955 650_7 $$2WoSType$$aJ
000111955 7001_ $$0P:(DE-HGF)0$$aNeuweiler, I.$$b1
000111955 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J.A.$$b2$$uFZJ
000111955 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2011WR011062$$gVol. 48, p. W06530$$pW06530$$q48<W06530$$tWater resources research$$v48$$x0043-1397$$y2012
000111955 8567_ $$uhttp://dx.doi.org/10.1029/2011WR011062
000111955 8564_ $$uhttps://juser.fz-juelich.de/record/111955/files/Erdal_et_al-2012-Water_Resources_Research.pdf$$yOpenAccess
000111955 8564_ $$uhttps://juser.fz-juelich.de/record/111955/files/Erdal_et_al-2012-Water_Resources_Research.gif?subformat=icon$$xicon$$yOpenAccess
000111955 8564_ $$uhttps://juser.fz-juelich.de/record/111955/files/Erdal_et_al-2012-Water_Resources_Research.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000111955 8564_ $$uhttps://juser.fz-juelich.de/record/111955/files/Erdal_et_al-2012-Water_Resources_Research.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000111955 8564_ $$uhttps://juser.fz-juelich.de/record/111955/files/Erdal_et_al-2012-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000111955 909CO $$ooai:juser.fz-juelich.de:111955$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire$$pdnbdelivery
000111955 9131_ $$0G:(DE-Juel1)FUEK407$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000111955 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000111955 9141_ $$y2012
000111955 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000111955 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000111955 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000111955 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000111955 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000111955 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000111955 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000111955 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000111955 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000111955 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000111955 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000111955 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000111955 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000111955 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000111955 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000111955 970__ $$aVDB:(DE-Juel1)140601
000111955 980__ $$aVDB
000111955 980__ $$aConvertedRecord
000111955 980__ $$ajournal
000111955 980__ $$aI:(DE-Juel1)IBG-3-20101118
000111955 980__ $$aUNRESTRICTED
000111955 9801_ $$aFullTexts